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ABSTRACT

Morse, Alfred Stephen. Ph.D., Purdue University, June 1967.
On the Analysis and Synthesis of Control Systems Using a Worst Case
Disturbance Approach. Major Professor: Violet B. Haas.

In this thesis, a study is made of two problems resulting from a
"worst case disturbance” approach to the design of disiurbed contrql
gystems. Using thisz approach, an error analysis problem is formulated.
The problem is to determine the worst case (laximum) value of a system
error index due to a bounded disturbance acting on a linear system. It
it shown that this may be accomplished by computing the maximum value
of a scalar function of known form with respeéf to a set of parameters
which are restricted in magnitude. An efficient computational algorithm
is developed which may be used in computing the maximum value of this
function.

The fﬁrmulation of a worst case disturbance min-max problem is
presented. The problem is to determine a controller which will result
in the smallest worst case value of a system error index. The
relationgship between this min-max problem and the differential game is
indicated. Min-max problems for general linear systems and three
different types of performance indices are investigated. It is shofn
that the min-max solutions of two of these problems do not always exist.
In the third problem investigated, which involves a bounded control and a
bounded disturbance, the complete min-max solution is found. Specific

examples, demonsgtrating the results for all three problems, are presented.



CHAPTER 1

INTRODUCTION

1.1 Motivation

A basic engineeripg task of continuing importance is the problem of
adequately controlling a system in the presence of an unknown external
disturbance. 1In designing a controller‘to acecomplish this task, the
engineer must take into account not only the physical plant to be
controlled, but also the external disturbance which ﬁgy act on it.
Since the actual disturbance is not known at the desigﬁ stage, one must
make some reasonable assumptions about the disturbance in order to
carry out the design of the controller.

The Worst Case Disturbance Approach is an intuitively appealing

way of dealing with this problem without requiring unreasonable or
overly restrictive assumptions about the disturbance. In general terms,
this approach may be outlined as follows. First it is assumed that the
disturbance is suitabl& restrained (i.e., magnitude limited). Next, for
a given controller, the worst possible (maximum) value of a prescribed
system error index due to this disturbance is computed. This value is
used to judge the quality of the system. If it is too laréé, the
controller is altered and the technique regapplied. This process
continues until a controller is found which will keep the corresponding

worst case value of the system error index at an acceptably low level.



A controller determined in this manner is referred to as a "worst case
disturbance” control.

There are two important research problems asséciated with the worst
case disturbance approach. The first (the Worst Case Disturbance
Analysis Problem) is the problem of actually determining the worst case
value of a system error index when the system is under the influence of
a given controller. The second (the Min—Mﬁx Problem) is the problem of
synthesizing a controller which will result in the smallest worst case
value of a given system error index. The research reported on the
following pages has been directed towards the understanding of and

possible solution to these two problems.

1.2 Alternate Approaches

There are several alternate approaches which one might consider in
designing a control system in the presence of a disturbance. Probably
the most straightforward is to assume that the disturbance is of a
specific form, say a sinusoid or a step [1]. A controller can then be
designed to make the value of a system performance index, which is
determined using the assumed disturbance, as small as required.
Unfortunately, information sufficient to enable the designer to make such
an assumption about the disturbance is often unavailable, thus limiting
the general use of this gpproach.

A second approach to the problem is to assume:that the disturbance
can be represented as a random variable [2,3]. In this instance, the
control is designed to make some statistical average of the value of a
system error index as small as required. Although the statistical

approach often leads to systematic methods for dealing with an unknown




disturbance, the approach seems to have several fundamental drawbacks.
First, an adequate description of the disturbance, which is usually
assumed to be available, is not always kpown. Even if some of the
properties of the random process are known, they may be of a type not
amenable to statistical methods (i.e., non-Gaussian, nonstationary
random processes). A more basic ¢riticism of the approach is that a
statistical average of the value of a system error index is not a
meaningful indicator of system performance. Whereas the use of such
criteria is of recognized value in communication system design, their
use in control system design is difficult to justify.

The’most significant criticism of the worst case disturbance
approach is that it may be overly conservative. Although this criticism
is certainly valid in some instances, there are certainly problems in
which a very conservative approach is justified; i.e., problems in
which human life or very expensive equipment is at stake.

The most important advantage of the worst case disturbance approach
is that it provides the designer with an upper bognd for the value of a
system error index which he knows will not be exceeded. Thus, if the
controller is designed so that this upper bound is an acceptably low
value, the designer knows that the system will operate properly in the
presence of any disturbance. Hence one may place a much larger degree
of confidence in a worst case disturbance controller than in a controller

desiepned using either of the two previously.discussed approaches.

1.3 Bac und
The formulation of the worst case disturbance approach for control

systems 1s due to Howard [%,5]. In his work he formulated a general



worst case error analysis problem and used variational techniques [6]
and reachable zone theory [T] to study it. Saridis and Rekasius [8],
also uéing a variational approach, studied an error analysis problem
involving a bounded disturbance with a bounded rate of change. While
the work reported by these researchers is appliceble to a wide class of
linear and nonlinear systems, their results in no way take into account
the local or global nature of their solutions.'r

Some work has been done on the actual design of control systems
using a worst case disturbance approach. Jackson [9] has considered a
design problem in which both the disturbance and its rate of change
are bounded. His results are limited to second-order, linear,
stationary systems. Graham [10] has used a related approach in the
design of an attitude controller for a space booster. Koivuniemi [11]
has also considered this approach, but failed to take into account the
poesgibility of local solutions.

A formulation of the min-max problem studied in Chapter 3 can be
found in [127. Although there is almost no theoretical work reported
in the literature on this problem, a closely related problem, the
differential geme, has received a considerable amount of attention. A
recently published book by Rufas Isaacs [13] contains a number of
specific examples of differential games. Work on the general theory of
differential games has been reported in [lh—l6]. A study of some of the
computational aspects of these problems is included in [16]. Other

work dealing with this subject can be found in [17-203.

fIn any maximization problem, one may find several local maxima. The
global maximum is the largest of these local maxima.

4




A partial differential equation similar to the Hamilton-Jacobi |
equation of variational calpulus {21] is used in the study in Chgpter 35
Though this equation can be found in most 6f the above referehces, it is
défived heuristically using £he‘Principle of Optimality [12]. The
simple derivation provides insight into Fhé nature of the min-max

problem. The derivation appears in Appendix B.

1.4 Organizetion
The research reported on the following pages is divided into two

. main chapters. The first deals with the worst case disturbance analysis

problem. In studying this problem; emphasis is placed on developing a
gound method for computing the worst case value of a system error index.
Chapter 3 contains the results of ah investigation of min-max
problems for a general clasg of linear systems. Problems involving
three different types of performances are analyzed and compared. In the
interest of continuity, the proofs of the results of this chapter are
given in a separate appendix.

Finally, in Chapter 4, the material in this report is briefly
summarized. Several suggestions for future study are indicated. The

important contributions of this research are also cited in this chapter.

1.5 Assumptions

In the work that follows, several basic dSsumptian are made. The
first is that the plant under investigation may be described by a linear
differential equation. This equation may be of any order and time-

varying.



Unless otherwise stated, it is assumed that the magnitude of the
disturbance is bounded, and that the bounds are known. Without this
assumption, in meny problems the worst case disturbance would be
infinite, leading to meaningless results. Furthermore, real
disturbances &re indted bounded, and one is often in a position to make
reasonable egtimate? of these bounds.

Performance indices of several different forms are considered. It
ie assumed that the particular ﬁeightings of the terms in these
performance indices are given. In practice, the weightings of these
terms would be determined from general system requirements in such a
way that if the system performance index is small, the requirements
of the system are being attained. The determination of proper
weightings will usually involve some trial and error.

In the min-max problems studied in Chapter 3, it is assumed that
the disturbance may not be measured directly. In practice, a signal
representing the measured value of a disturbance must come from the
output of a sensor describable by a differential equation. Thus this
gignal may be considered as a state variable of the system.

For obvious reasong, only feedback control is considered in this
work. Without knowing & disturbance in advance, it is impossible to
control a disturbed system without feedback. In the worst case
disturbance analysis problem studied in Chapter 2, it is presumed that a
linear feedback control is included in the description of the system.

A point of view taken in all of the following work is that ég}x the
globally worst case value of a system error index or performance index
has meaning. There are two reasons for this. First, if one accepté a

local maximum as the worst case value of the error index and chooses a




controller to make this value small, he may in reality be increasing
the globally worst case value of the epror index. 8econd, without
knowledge of the global maximum, the designer has no way of knowing if

the system will operate acceptably under worst case conditions.

1.6 Notation and Terminology

Throughout this work, state variable notation is used. Vegtors
and matrices are underlined, scalars are not. Unless otherwis; stated,
all vectors are column vectors. A vector or matrix is called continuous
or differentisble if all of the elements of the vector or matrix are
continuous or differentiable. The symbol x(t) represents a vector whose
elements are the time deriva’t;ives of the elements of x(t). A prime (')
ig used to indicate the transpose of a matrix. The inner product of

two n-vectors x and y is represented by

N ‘
Xy= % x. vy (1.1)
=1 i1
where x; and y, are elements of the vectors. The norm of an pevector

Xx is defined as
|lxl]g = x'e ¥ (1.2)
where Q is a positive-semidefinite nxn matrix. The symbol F (x) iz used

to represent an n-vector whose i*8 component is

aF(x)

dx, ?

F(x) being a scalar function of x.
A scalar function F(x) is called multimodal if it has more than one
local maximum [22]. A get X is called convex if for every pair of

points x, y in X, the point



z=(lL-A)x+rxy; Ogagl (1.3)
also is in X. A function F(x) defined on a convex set X is called
convex if for every pair of points x and y in X

P((1-2) x *a p) € (L-2) F@) +1 FE) (1.4)
for 0 g A < 1. In Chapter 2, use is made of the following property of
convex functions with continuous derivatives [23]:

Fx)> F(p) +EQ) -3 (1.5)
Finall&, it is convenient £; define the function

1 ifys> 0
sgn(q,y) =< q ify=0: (1.6)
-1 ify<©O

where q and y are scalars.




CHAPTER 2

A WORST CASE DISTURBANCE ANALYSIS PROBLEM

2.1 Introduction

In this chapter a worst case disturbance analysis problem for
linear systems is formulated. The first logical step towards the solution
of this problem is to invoke the necessary conditions of the Maximum
Principle [éa. Unfortunately, these conditions lead to a rather
difficult two-point boundary value problem. It will be shown in the
work that follows that this boundary value problem may be avoided by
introducing a special function which ig related to the worst case value
of the system error indgx. Through a qiscussion of the analytic and
geometric properties of this function, an understanding of the under-

lying nature of the error analysis problem can be obtained.

2.2 General Problem Statement

It is assumed that the system to bg analyzed can be described by
the linear vector differential equation
x(t) = A(t) x(t) + c(t) v(¢) (2.1)
where x(t) is an n-vector describing the state of the system, A(t) and
c(t) are time-varying matrices, and v(t) is a scalar forcing function
répresenting a disturbance acting on the system. It is assumed that the

elements of A(t) and c(t) are piecewise-continuous on [t,7T] vhere t_
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is & fixed initial time and T a fixed terminal time. The function v(t)
is assumed to be a member of the set Sv. SV is the set of piecewise-
continuous time functions defined on [t o,'l‘] and satisfying

v1(t) € v(t) < v, ()

te [t ,T) (2.2)
1 (8) < v, (&) b et

where Yl(t) and Ya(t) are piecewise-continuous on [t ;T]. The initial
state
x(t)) = x_ (2.3)

is assumed to be known.

Next, define the error function

E(t) = ||x(t)]] (2.4)
|=(t)] 0

vhere Q is a positive-semidefinite constant matrix. Finally, to judge
the quality of the system we will défine a performance index simply as
1.2
I(x,, b5, T3 v) = 2 EN(T) | (2.5)
The worst case disturbanceé problem may now be stated::
Determine the disturbance v¥*(t) ¢ s, such that
I(x ts T3 V) 2 J(x, £, T;5 V) (2.6)

for all v(t) ¢ S,

2.3 A Special Case

Consider first the specigl case of (2.4) in which
E(t) = |K'x(t)| (2.7)
where K is & constamt n-vector. Since the disturbance which will
maximize J(Eo’ t, T3 v) will also maximize E(T), we focus attention

on the error function.




11

From linear differential equation theory [24] it is well known that

x(T) may be expressed as
x(T) = y'(t) x(t) +J‘T f(r) e(r) v(v) av  t¢ [t,,T] (2.8)
t

where y¥(t) is an nxn matrix satisfying

¥(t) = - A7) y(t)  te [ty T] (2.9)

with terminal conditions

¥(T) =1 (nxn identity matrix) (2.10)

The terminal error may now be expressed as

E(T) = Ky’ (t) x(t)) + yf Ky () c(7) v(r) a1l (2.11)
o]

It will be convenient to let

Cvp(8) (), (8) - yy(8)

v(t) = = +< - > o(t) (2.12)
where p(t) is a pilecewise-continuous scalar time function satisfying
lp(t)] <1 te [t,,T] (2.13)

Because of the obvious one to one relationship between v(t) and p(t), it
will be sufficient to maximize E(T) with respect to p(t). The error
function in equation (2.11) may now be written as

E(T) = Ky (8,) x(t)) +a(t)

by, (1) =y, (1))
s j: Ky (1) o(v) —2 a}fl_ a(%) 4| (.14)

where

(r,(7) +y, ()
o(ty) = [T 2 k(o) o) ar (2.15)

t
°

It is clear by inspection of (2.14) that if
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Ey(t) x(t,) +6(t) #0
the maximizing p(t) is

1o1r (' (6) w(t) DXEY (8) x(t) +6(t ) > 0

p*(t) ={ 4 oar (e (t) I(t) 5)(5’1' (to) g(to) + e(to)) < o}

(2.16)
If c’(t) ¥(t) K= 0 on some subinterval of [t,sT]» it is clear that
p(t) has no effect on E(T) on this subinterval; it may therefore be
chosen to be any value. To be definite we shall set p*(t) = 0 on any
such subinterval.
Inspection of (2.1%) further indicates that if
Ky(t,) x(t ) +o(t) =0
the maximizing p(t) is not unique. That is, if

1 ir c'(t) w(t) K> 0"

p*(t) = { } (2.17)

-1 if  c/(t) y(t) K< O
it is clear that - p*(t) will'also maximize E(T). Since we are
primarily concerned with the worst case value of E(T) which is the same
for either choice of p(t), we shall find it convenient to define a
gpecific meaximizing disturbance. Thus, if

Ky (6) x{t) +6(t) = 0

it will be assumed that p*(t) ig as defined in (2.17). All of the above

statements lead to the following expression for v¥(t):

[Yg (t) - Yl(t)]
= 2

V(%) [ean(0, ¢'(t) ¥(t) K]

(£) +y4(t)
[sgn(l, Elil (to> .Js(to) + e(to))] +[Y2 > Y1 ]

(2.18)
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By invoking the Principle of Optimality [12], one may replace the o
argument t  with t in the above expression without affecting v*(t). The
resulting expréssion for v¥(t) is therefore a function of the present

state or a "feedback” disturbance.

The worst case disturbance value of the terminal error may now be

expressed as

BX(T) = |E'y' (t) x(t.) +6(t )]

+ : [Yz_(‘,r) ; Yl(?)]ig(r) ¥(7) K| ar (2.19)
o

Again using the reasoning of the Principle of Optimality, to may be
replaced by t etto »T] without affecting the value of the above expression.

Though ir_xdgpendently developed by this author, the above results are
not new. Jackson [9] in 1960, Desoer [25] in 1962, and Howard (¥ in
196k have all obtained similar solutions.

The above results are illustrated by the following example: .
Example: 2.3.1

C(ongider the oscillator

Yy +y=v(t)
where

|v(t)] g |
Define

E(T) = |y(1)|

The problem is to determine the maximum value of E(T). If X, =y and
X, = ¥, the ¥ matrix may be expressed as
cos(T-t) sin(T-t)

w(t) =
¥(e) <-s:'m('.!.‘-t'.) cos(T-t)>



1k

Thus
v¥(t) = - a [sgn(0, sin(T-t))]
[san(1, (xl(t) cos(T-t) - xz(t) sin(T-t))]

Using (2.19), the worst case disturbance value of E(T) is computed to be
E¥(T) = |cos(T-t) x,(t) - sin(T-t) x,(t)]

+a[2g +1- |cos(T-t)|]
where 45_%—?3;, +1

and 4 is any non-negative integer.

2.4 The Maximum Principle Equations for the General Problem

We now return to the general problem of Section 2.2. 8ince the
maximization of J(J_to, tyr T3 v) with respect to v is a problem in the
caléulus of variations, the Maximum Principle [6] is employed as a first
step towards solution.

Define the Hamiltonian

R(x(t), A(t), v(t), t) = 2/ (t) A(t) x(t) +/(t) o(t) v(t) (2.20)
If v*(t) is a maximizing disturbance resulting in a trajectory x*(t)
te [t »T] , then the following necessary conditions must hold:

1. There exist multipliers )  and A(t) which are continuous on
[t,-T] and which do not all vanish simultaneously on [t,,T].

2. The trajectory x*(t) and the disturbance v*(t) are related on
(%o by |

x*(t) = A(t) x*(t) + c(t) ve(t)

} (2.21)
with 5*(1-.0) =X

3. The multipliers }‘o and L(t) satisfy the differential equations
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C 2o |
Yo (2.22)
K(t) = - 47 (s) a(2)
on [to,ig. '
L. At the terminal time
A(T) = ) Qx¥(T) (2.23)

5. For all t ¢ [t,,T] and v(t) ¢ S_
H(x*(t), 2 (), v*(t), t) > H(x*(t), A(t), v(t), £)  (2.2L)
Note that from condition 3,xo must be a constant. From conditions
3 and 4 it is clear that if A =0, A(t) = 0. This would violate
condition 1. Thus ) # 0. We choose it to be unity.

Note that condition 5 implies that

(t) - yq(t)
pr(s) = 2T o, (e 4(9)

(t) (t)
+ 22 ; Y1 (2.25)

‘at all points on '[to,T] where c’(t) p(t) # 0. If c¢’(t) p(t) =0 on

some subinterval of [to,T], the trajectory §?(t) is said to be on a
singular surface [Zéﬁ. On a singular surface, condition 5 of the
Maximum Principle is satisfied for any v(t). The problem of determining

v*(t) on a singular surface will be solved in the next section.

2.5 A Simplification of the General Problem

“W’The necessary conditions outlined in the last section imply that
one must solve a two-point boundary value problem in order to find the
maximum value of J(go, to’ T; v). By introducing a special function, we
shall show that this boundary value problem may be avoided. The idea is

basically as follows. In Section 2.3 a complete solution was obtained
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for the special problem with the error function defined by equation (2.7).

Thus, associated with the special problem there must be multipliers
wvhich satisfy the differential equations (2.22) and boundary conditions

(2.23) of the Maximum Principle. It is noted that the multipliers for

- the general problem of Section 2.2 also satisfy these same differential

equations but with different boundary conditions. If an error functioh
can somehow be judiciously defined for the gpecial problem so that the
multipliers for both problems satisfy the same boundary conditions, then
the general problem will be solved.

Consider the error function

E(t,0) = |x'(t) M of (2.25)
vwhere & ¢ E" is an arbitrary constant m-vector. M ie a nonsingular

matrix which diagonalizes Q:

maw =(-—1-J%p (2-27)

L. 1is the rxr identity matrix, r being the rank of Q. The other entries
in the partitioned matrix in (2.27) are null matrices of appropriate
dimension.

Consider the performance index

2
= E°(T,a _
J(x, t, T, & v) = __%_—_.). (2.28)

The worst case disturbance value of this performance index can be . related
to the worst case disturbance value bf the general performance index
Ji}o, t,o Ts v) defined by equations (2.4) -and (2.5). |

Define the return F(x(t), t, @) as the worst case value of

EZ(T,Q»@ for a process starting at time t ¢ [to,Tj in state x(t).
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F(x(t), ¢, @) = mx [ Ez(_ggl] (2.29)
V(T)‘Sv
Te[t,T)
From the results in Section 2.3 it may be readily determined that
F(x(t), t, @) = 5[ |2/ (t) B(t) @ + 8(t,0)| * g(t,)}°  (2.30)
where
B(t) = - A’ (t) B(t) |  (2.31)
and
P(T) = M1 (2.32)
(We have introduced P(t) = _t(t) to simplify notatior.) The scalars
Z(t,0) and 6(t,2) satisfy
A(t,2) = - |2/ (+) B(s) o B Yl(t) !
vo®) v (8) - ) (2.33)
9(t,a) = - [’ (8) B(t) [ g ~1——~
with boundary ceconditions
#(T,a) = 0
o(T,a) = 0 } (2-34)
Define the vector function A(t,@) on [t ,T] by
A(6,@) = B(t) @ [san(l; (2 (t,@) B(t) & + 6(t,2)))]

[z (t,@) B(t) a + 6(t,@)| + #(t,2)] (2.35)
where x(t,a) is the worst case trajectory for the performance index
defined in (2.28). It may be easily determined from the results of
Sectitn 2.3 that the worst case disturbance for J is

o(6s2) = [ vz(t) y1(8) ] san(0; < (t) 1(t,2))
o Y2t - ”1(15) ] (2.36)
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Next define Qr as a subspace of En with the following properties: A

vector @ is in Qr it
1) ga=1 }

(2.37)
2) a =0 i=r+1lton

.th .
Next consider the vector Ea(éo ’ to » 9_) whose i conxponent is

g (x ’ toy 9)

da., -o
i
Inspection of (2.39) indicates that these derivatives will exist for all
ae Eif

alg]| ,

ae = Egn(lxg)

With these preliminaries completed, the following theorem may be stated:

Theorem 2.1
" If'there exists an @ ¢ Q0 such that
_P,_F_'a(g_(o: t, a) = Z(F(_léo: by a)) a (2.38)
then the trajectory x(t,a), )(t,a) and the disturbance v(t,a)
constitute a solution of the necessary conditiqns of the Maximum

Principle for the general problem formulated in Section 2.2.

In Appendix A it is shown that At ,é) is continuous and satisfies
the differential equation in (2.22) on [to »T], thus establishing that
necessary conditions 1 and 3 are satisfied. Condition 2 is automatically
satisfied since x(t ,EI.) is the trajectory resulting from the disturbance
v(t,_?l_). Next, from (2.25) and (2.36) it is clear that necessary
condition 5 is satisfied. Thus to prove Theorem 2.1 it remaing to be

shown that if the hypothesis holds, necessary condition i (the
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transversality condition) holds. To do this first note from (2.30) that

Ea(gc_c, t, é) = { [_g’(to) 5(1;0) +J': (1.2.(_)_.1_1__> P (7) o(7) d'r]
o

sen(l, (x B(t ) @+ 6(t_,a))

f(

But from (2.8), (2.32) to (2.3%) and (2.36) it follows that

Yz(")

Yl( )>P’ (v) o(7) san(0, ¢’ (%) B(%) a)ar}E(r,2)

(2.39)

-~ _l ~ -~ ~ ~
oz, t @) = (M) x(1,0) E(T,0) sen(1l, (x! B(t)) @ +6(t ,@)))
(2.40)
From the hypothesis of the theorem
~ -~ 2 ~ ~ ~
2 b, @) @= EY(1,0) @ = D Fy(x, ¢, Q) (2.41)
Thus

E*(1,0) @ = D) x(1,0) E(T,@) sen(1, (x! B(t) @ + 6(t_,2)))

(2.42)
T DY x1d) s, (xf B(t) & + 6(¢_8 )
a=— ‘ E(T,é)—o 2 2 (2.43)
From (2.35)

A(T,Q) = M1 a[san(l, (x/(1,@) B(T) @ + 6(T,a)))] B(T,&)  (2.hk)
As a result of the proofs given in Appendix A h
sen(l, (x, B(t ) @+ 6(t_,3))) = sen(1, x(T,@) B(T) & + 6(1,Q))

/
(2.45)
Thus using (2.43) and (2.44)

AT =M1ty x(1,q) = g x(1,9) (2.46)

Thus the transversality conditions is satisfied and the theorem is proved.
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The converse of Theorem 2.1 is also true:
Theorem 2.2
If for some :_1_ ¢ OF, the trajectory x(t ,El_) » At ,é) resulting
from the disturbance v(t,2) satisfies the necessary conditions of
the Maximum Principle for the general problem, then

DE(x, t, ) =2 [Fx, t, ] a (2.47)

Since the necessary conditions are satisfied
A(1.8) =  x(T,Q) (2.48)
From (2.35) and (2.48)
g x(1,0) = M1 2 B(1,0) sen(1, x'(7) B(T) @ + 6(T,2)) (2.49)
Premultiplying by M and using (2.2';{) |
D(¥ 1)’ x(T,2) = a B(T,2) sen(1, x'(T) @ + 6(T,0)) (2.50)
or
D(M™1)’ x(T,2) E(T,@) sen(l, x(T) B(T) @ + 6(T,Q))
= ae(1,0) = 2 F(x, t a) a (2.51)
Finally, using (2.40), (2.4%5) and (2.51) it follows that
Q.F.‘q(?_‘.o’ L é) =2 F(.?S.ol T, E‘.) é (2.52)
and thus fhe’ theorem ig proved.
There remains one important question. Does there exist an & ¢ Qr
such that v(t,8) is indeed the maximizing disturbance for the general
problem? This question is answered by a corollary of the following

theorem.

Theorem 2.3
Let J(x_, t,» T5 v) and F(x(t), t, @) be defined by (2.5) and

(2.29) respectively. Then
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max J(x, t,, T5 v) = max F(x, t , ) (2.53)
Ve S a G QI‘
To prove this result, first consider the difference betﬁeen the
performance indices for the general and special problems:
Iz tor T3 v) - (x5 v, T, &5 )
"'E x'(T) @ x(T) - (_’(T) M a) ]
1 .
== ||p( 1y x('l‘) - a(x’ (T) M a)|| (2.54)
It is clear that
J('J'('O’ to: T3 V) 23(501 to.v T, a; v) : (2.55)
for all ve S _and @ ¢ 0. In particular, if v*(t) is the maximizing
disturbance for J,
T(x,s 50 T5 V) 2 I(x 5 ¢, 75 v) 2 Tx, ¢, T, & v) (2.56)

for all a ¢ Qr, Ve sv. Therefore
Ixys by T3 V) 2 T(x,s b, T5 @, v(5,@)) = F(x, t, @) (2.57)

for all @ ¢ q°. If x*(T) i1s the final state resulting from the

disturbance v*(t), the vector @* may be chosen as

(M 1)’ xx(1)

a* = (2.58)
T Reh x|

From (2.54) it is clear that
Iz by T3 v¥) = T(x , b, T, 2% v¥) (2.59)
Therefore

J(x,t,T,V*)z max F(_o t,a)zF(c t’a*)
r
Qe Q

23(50: to) T, O%; v¥) = J(l(o: to) T; v¢) . (2'60)

Thus the theorem is proved.
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Corollary 2.1

If v*(t), a* and v(t,Q) are as defined above, then |
v¥(t) = v(t,0%) (2.61)

is a maximizing disturbance for the general problem.

Thie féllows directly from Theorem 2.3.

Note that since v(t,@*) is not necessarily unique, v*(t) is not
necessarily unique. However, if several different disturbances result
in the worst case value of the performance index, this will cause no
problem sin2e it is the worst case value which is of frimary concern.

In the last section, the possibility of a singular surface (i.e.,
l'(t) ¢(t) = O on an interval of finite length) was mentioned. From the
discussion in Section 2.3 and the ¥esults stated above, it is clear that
the disturbance v*(t) does not affect the performance index on a singular
surface. By defining v(t,a) as in (2.36), v*(t) iz #pecified to be zero
on a singular surface.

Note that as a consequence of Theorem 2.3, equation (2.&7) becomes
a necessary condition to be satisfied by a mai&mizing a. Uhfbitunately
this condition may be satisfied by more than oné value of Q3

F(xo, to Q) is a multimodal function (see Section 1.6) of @. More will

be said about this in a later section.

2.6 Properties of F(x(t), t, @)

In this section, the previously derived results are summarized. 1In
addition, several additional properties of F(x(t), t, @) are described.
1. F(x(t), t, @) is the optimal return for the performance index

-~ 1 -
I(x,r £, T & V) =5 (x/(T) ¥ 'y
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The trajectory x(t,Q), A (t,2) and the disturbance v(t,e)

represent the optimal solution for the performance inaei

' 3(50) to: T, @; v).

The trajectory 3(t,g) » 3(t,@) and the disturbance v(t,&)
satisfy the necessary conditions of the Maximum Principle for
the performance index
1

I(x,s by T v) = 5 x'(1) g x(1)
if and only if

DE,(x,t, Q) =2Fx,t,aa
vhere & ¢ Qr. For the proof see Theorems 2.1 and 2.2.

max JQ:O, tos T3 v) = maer(go, s a)
Ve SV 930

For the proof see Theorem 2.3.
F(Zo’ g @) is a convex function of Q¢ E”’. The proof follows
from an application of the definition of convexity (see
Section 1.6) to the expression in (2.30).
F(l‘o’ tg a) = F(_J_co, tos - a), e E". This may be seen from
an inspection of (2.26).

r .
J(gc_o, t,o T v(t,a)) ZF(XO: té’ a), @e¢ n - This follows

from (2.55).

|

F(g_co, % a) = 3 Fc'!(}_co, s a) a, ae Qr. This follows
from (2#0)

IfDFy(x,t,, @) =2F(x,t,a e a°, then the
following hold: |

a) + DY)’ x(1,0)
g =

1o ¥t x(.9)]]



This is easily proved using (2.43) and Property 6 above.
p) Iz, t, T5 v(t,@) = F(x, t , Q)
This follows from Property 9a, and equation (2.54).
2
e) Folx, t,, @) DE(x, t, @) =[2Fx, t,, )
This follows directly from the I;ypothesis above.

For computational purposes one might make the substitution

a = (1 - ;51 ag)l/z
r . 1
i=1

2k

(2.62)

and consider F as a function of the independent variables C!l to ar-l'

Assuming the substitution in (2.62) has been made, it is convenient to

define the gradient of F, vrg as an r-1 vector with ith component

, d
v Fi = Fa. + Fa R i =1t r-1
i r i

But from (2.62)

da Qa.
I S
da, a
i r
Thus
r ai
VF1=Fa.'Fa'oT i=1tt r-l
i r r

We may now state the following additional properties:

(2.63)

r
10. IfDE(x,t,a) =2F(x,t,aa ae¢q , then v'F = 0.

The proof of this follows directly from (2.63).

11. The vector er is discontinuous on the surface described by

r--l
€ %% =~ iE-l e 8

-1 2.1
a = (-5 d) /2
‘ i=1

(2.64)
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E=R(t)x +f 5 P'(1) c(7) at (2.65)

To prove this, it is noted from (2.30) that T, has a discontinuity
along the surface g’g = 0. Property 11 follows directly. It may
be readily determined that the expressions in (2.64) describe a
half hyper-ellipsoidal surface in r-1 space. The equation of the
entire ellipsoid is

This surface divides the r-1 dimensional space on which F is defined
into two parts.

These properties are best illustrated by means of exarples.

Example 2.6.1

Consider the system

X = X%,

% = v
where

vl <1
and

xZ(O) = -1

The problem is to maximize the performance index

3(x(0), 0, 35 v) =2 [x2(3) + x2(3)]
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with respect to the disturbance v. It is easily determined that
1 ©
2 -C )
3-t 1

g(t,) = yi |(3-7) &y +a | ar

F(x(t), t, @) = 5 [|@ x,(8) + [(3-8) @ + @] x, ()]

+ g(t:g)]z
A plot of F(x(to), t a) vs. a, for

a, = (1- (15)1/2

is shown in Figure 2.1. The other curve in the figure is
J(xo, to, T; v(t,a)). The values of o resulting in vr_g = 0 are
- 1//5, 1//2 and 5//29. The corresponding final states and values of

performance index are given in Table 2.1.

Table 2.1 Results for Example 3.6.1

o x,(3) f_z_(_3_) J
-1//5 1 -2 2.5
1/r2 -4 -4 16.0
S/29 5 2 14.5

It can be easily verified that each of the final states above results
from a trajectory satisfying the Maximum Principle. Since the above
data exhausts all possibilities, it is clear that the worst case value

of the performance index (i.e., the global maximum) is J = 16.
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Note that Property 1l implies that va'will have a discontinuity at
a = 2//5. 1Inspection of the curve for F in Figure 2.1 indicates that
this is indeed the case.

Example 2.6.2

Consider the third-order system described by

x1= Xz

X, = X

i3 = - 8xl - 6x2 - 3x3 + 8v

where
|V| <1
Por a given initial state X, the problem is to meaximize
Iz, 05 T3 ¥) = 3 [X5(T) + x(T) + x5(T)]
with respect to v.
This problem has been solved for two different initial states and

for twq different values of T. The results are summarized in Table 2.2

below.

Table 2.2 Results for Example 2.6.2

Hill  Initial State (x!) T of of J(x,, 0, T; v¥)

- X _z
1 (o, 0, 0) 1 -.1% -.06 4.33
2 (10, -5, 1) 1 .18 -.81 64.6
3 (o0, 0, 0) 3 -.20 -.05 20.2
L (10, -5, 1) 3 -.16 -.31 53.3

Level curves (curves of constant F(Eo, 0, a)) for "nills" 1 to &

on the (al’ az) Plane are shown in Figures 2.2 to 2.5. The dependent
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Level curves for Hill 1.
Level curves for Hill 2.

Figure 2.2.
47
Figure 2.3




-1.00
Figure 2.4. Level curves for Hill 3.

Figure 2.5. Level curves for Hill 4.

30
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variable

1
a = (1- - )2

It is observed that hills 2 and 4 are multimodal. The elliptical
surfaces of discontinuity of vrf(go, 0, @) are clearly visible.
Note that the points at which the peaks of hills 3 and 4 occur are

closer together than the corresponding points for hills 1 and 2. 1In

- addition it is observed that the surface of discontinuity for hill 4 is

closer to the bounding unit circle than is the surface of discontinuity
for hill 2. In fact as T — o, one would expect a* to become independent
of the initial state, and the surface of discontinuity to approach the
unit circle. The reader may easily convince himself (see equation 2.65)
that these statements are true for any stable system with a
symmetrically bounded forcing function.

Figures 2.2 and 2.4 seem to indicate that hills 1 and 3 are
unimodal.! This is primarily due to the incomplete data presentations in
the proximity of the bounding unit circles. A second plot of level curves

for hill 1 (Figure 2.6) in the (C

12 a3) plane with
2
az“ll'a:ZL‘ 3

clearly indicates that hill 1 is multimodal.

*A unimodal hill is a hill with a single pesgk.



Figure 2.6. Level curve for Hill 1 using @ and

a3 as independent variables.

2.7 Geometric Interpretation

It is possible to give a geometric interpretation to the function
F(go, o g) used in Example 2.6.1. To do thie first consider
B(1,2) = |0y x,(3) + 0, x,(3)]
vhich is the error function for the example. E(_T,g) may be thought of
as the magnitude of the proJection of the final state x(3) in the ¢
direction (remember that O has unit length). It is clear that the
worst case value of E(T,0) is determined by the final state x(3) which

has the largest pro‘;jec"tion- in the g,diréction.
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To proceed further, we shall make use of theAnotion of a reachable
zone [k, 7). A T-second reachable zone for a forced linear system
éonsists°of all the final states which may Be reached from the given
initial state in T seconds due to the system forcing function. The three
second reachable zone for Example 2.6.1 with zero initial conditions has
been previously determined [N] and is shown in Figure 2.7. It may be
readily established that the homogeneous part of the final state (i.e.,

that part of the final state due just to the initial conditions) for the

()
=N 1 E
This means that the reachable zone for the initial conditions in the

problem may be determined by sghifting the center of the zone shown in

Figure 2.7 to the point X The resulting reachable zone is shown in

xf3)
-5
-4
-3
-2

Figure 2.7. Three-second reachable zone
for the system in Example 2.6.1
with zero initial conditions.
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Figure 2.8. (The fact that the boundary of this zone intersects the
origin is accidental and of no relevance.)

How to determine the worst case value of the error function is now
apparent. First the line in the O direction is extended. Then nor_mals
to this line which are tangent to the boundaries of the reachable zone
are determined. The worst case value of E(t,g) isg clearly equal to the
larger of the two final state projections in the @ direction. The
corresponding worst case final state isg indicateé by-§(3,a). Thus for
the given value of @,the distance from the origin to point A in
Figure 2.8 represents the worst case value of the error function. Since
F(gb, to, @) is equal to one-half of the square of the value of the worst
case error function, the interpretation of F(Eo’ tos Q) is complete.

The operations juét described can be performed for many values of
@ resulting in the dashed line shown in the figure. The dashed line
touches the boundary of the reachable zone for the three values of al
given in Table 2.1.

Though the idea of a reachable zone is helpful in understanding
the F(fo’ to’ g) function, reachable zone theory is of limited value as
a means of solution of the general worst case error problem. This is
because for systems of order higher than two the computation of a

reachable zone boundary is quite difficult.

2.8 Computational Considerations

As noted in a previous section, the maximization of F(go, o Q) is
a multimodal hill-climbing problem. Each local maximum of the hill
corresponds to a solution of the Maximum Principle equations. At the

present time, the author knows of no method (short of an exhaustive
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search in @ space) which is guaranteed to find the global maximum of a
multimodal hill.

One method which might be tried is outlined as follows. First
define a set of evenly spaced points in nr. From each of these points
use an efficient local hill-climbing technique to determine the local
maximum. Compare the local solutions to determine the best possible
candidate for thelglobal solution. Because F(ﬁb, t > @) is usually a
relatively smooth function of Q@ (not too many peaks) and because Qr is
compact, such an gpproach is feasible if r is not too large. Of course,
an efficient local hill-climbing method is required.

We shall suggest two computational techniques for determining a
local maximum of the hill. Both are iterative methods.

The functions Fo(x , t , @) and F(x_, t_, @) ere utilized in both
computational schemes. It is possible to compute these quantitiéswon
successive iterations without solving any differential equations.
Consider the expression

Ea(ﬁoy to: a) = {i sgn(0, g'g_)

[ Yz(t) ; Yl(t) P/ (t) E(t)][sgn(O, c’(t) P(t) g] dt} E(T,Q)

° (2.67)

which follows from (2.39) and (2.65). If we define the n-vector

ult) =-f: I
e}

+ IT

t

YZ(T)

; v B () o) a (2.68)

it may be readily determined from (2.67) that
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Folx, t, @) -
S =& (0, @) +u(t)) sen(0, e(F)) B(E)) @)
r 2 (e ) - ¥e)) 0, & () By ) 0 (2.69)

where the t{s, i=1 to k,are the zeros of (c’(t) P(t) @) (or the end-points

of intervals on which ¢/P& = 0) on (tO,T) and t T. The zis,i =1 to

K+l
k+l, are arbitrary points satisfying Tb-i e (ti-l’ ti). Note that since
__v{(t) and E are independent of @, they need only be computed once.

To obtain F(l(o’ t. a) and Ea(l‘o’ t. a) from (2.69) is a simple
matter. We know from Property 8 in Section 2.6 that

Fi(x,t,a)a
—a — -—
F(x, t,, @) = ———2 (2.70)

But since

F(’_(o: toi 9) = —-—g-T-’-gl (2-71)

it is clear that

Flx,t,aa
E(T,9) = = —rmay (2.72)

Thus using (2.69) and (2.72), E(T,Q) can be computed. Using (2.69)
again and (2.71), one can compute _F_'a(gc_o, t s a) and F(zo, s a). Note
that except for the initial computations needed to compute P’ (t)c, x(t)
and g, no integration is required.

It is also pointed out that only the first r elements of
Ea(_ago » tb ) g) are required for computation. Hence, rather than
computing and storing (if a digital computer is used) all the elements
in g, w(t), and P/(t) g"(t), one need only compute and store the first

r elements. Thus memory requirements are roughly 2r time functions.
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The first computational method to be considered is simply a gradient
technique. Basically the policy is to change @ in the direction of

+
steepest ascent on the hill. Given the point gd, to determine g? 1 g0

that
"
Fx, 6, @) 2 Flx, ¢, o)

O

one could use the scheme

j+1 r

ag = ai +8 v F(go, to’ QQ) i=1tor-1 (2.73)

e 1/2
- +
ot ( 1 - ;81 ag l)

r =1
where S is a positive number (the step size). The gradient components
eri may be computed using the expression in (2.63). The standard

method for determining § is to assume that pAF, the change in F,

2@ = Fx, b ) - R, b @) (2.74)
satisfies
aR(@™) o Z}i (" - o) o7F, (x,, t,, &) (2.75)

By then specifying the desired fractional change

AL : (2.76)
P F(x P aJ)

=0’ Yo’ =

one may solve for S.
+1
oI Rz, b, o) |
S = r~1 , r aj 2 (2.77)
121 (v Fi(_?_‘_o) to: ¢ ))

Of course for (2.75) to hold, one must pick pj+l small. Just how small

can only be determined by trial and error.
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We have tried this approech on several prcbtlems with moderate
success. The main problem has been (as it usually is with gradient
techniques) the determination of a suitable step size.

Rather than pursue the gradient method any further, we consider a
second method which completely avoids the step size problem. It has
been noted in Section (2.6) that F(l‘o’ t,s Q) is a convex function of Q.

Thus using the property of convex furictions described in (1.6)

Rlx,s o @) 2 Flx,, b, &)

+ Efx s b, o) @ - o) (2.78)
Thus
aF@™) 2 Bz, b, o) (@ - o) (2-79)

The expression on the right will be a maximum for g‘jﬂ e Qr if

aj+l E‘(,1(50’ to’ EJ)
sz, tor @I

(2.80)

Furthermore, AF(&® ™) will be strictly positive if o # ™1, o ¢ 7.
1r o*! = o, 1t follows from Property 3,Section (2.6) that a local
maximum of F has been found.' Thus using the policy expressed in (2.80),
convergence to a local maximum is assured.

. This computational technique has been applied to several prbblems
including Examples 2.6.1 and 2.6.2. Using different initial guesses

1 .
for g » convergence to local maxima was invariably rapid (1ess than 5

Tor course » one might make an initial guess for & corresponding to a
local minimum of F. For such a case,using (2.80) a2.= . .If, however,
the initial guess is not right at a minimum point ,.g3f1—= g‘J can only
occur at a local maximum.
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iterationg). In view of the fact that the amount of computation per

iteration is very small, this technique is considered to be highly

efficient.

2.9 Summary

In this chapter a general error analysis probleui for linear systems.
with quadratic error criteria and bounded disturbances has been’
formulated. By identifying this general problem with a gimpler one, we
have been able to show that the maximum of the mnctional’J(_:_co > B T v)
with respect to the forcing function v(t) is equal to the maximum of
the function F(_J_co > % a) with respect to 4 ¢ qQ°- A geometric
interpretation of the function F(}D, to’ g) has also been presented.

Since the dimensionality of Qr depends only on the rank of @ and
not on the order of the system, high order systems present no speéial
computational difficulties. This reduction of dimensionglity was
sugge.sted in [123.

In general, if the system is not completely controllable (for a
definition of cuntrollability, see [24]) with respect to the
disturbance; singular surfaces can exist [h] . Since our results take
into account singular cases, a controllability assumption (which is
unreasonable for disturbance inputs) has not been required. It has
been noted that while on a singular surface, the disturbance has no
effect on the performance index.

The multimodal nature of F(lto s £ ) has beéen &stablished. It was
pointed out that each local maximum of F(-_J_(o 3 tb » g) corresponds to a
local solution of the Maximum Principle equations. However, since

F(_}_(O ’ to » @) is relatively smooth and since Qr is compact, for small r
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one should be able to determine the maximum with & reasonable amount of
effort.

‘To aid in computing the maximum, an efficient computational
algorithm has been presented. It shouid be mentioned that other
computational techniques have been proposed for solving the probiem
formulafed in this chapter [28],[&]. The author's experience with
these other techniques has indicated that they require considerably
more computation and are not as'efficient as the scheme proposed in this

chapter.
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CHAPTER 3

A STUDY OF MIN-MAX PROBLEMS FOR LINEAR SYSTEMS

3.1 Introduction

In the design of a control system based on a worst case disturbance
approach, one attempts to determine a feedback controller which will
result in an acceptably small worst case value of a system error
function. Thus for each controller considered in the design, a worst case
disturbance error analysis is performed to determine if the control is
acceptable. Often, however, one is interested in having the system
behave not only in an acceptable manner, but also in the begt possible
manner. In view of this, it seems reasonable to pose the following
Problem: Determine the feedback controller from a suitably defined class
which will result in the smallest worst case disturbance value of the
system error function. Mathematically, this ambunts to determining the
controller which minimizes the system error function while the
disturbance acts to maximize it. This problem shall be referred to
as the "min-max" problem.

On the following pages, a more detailed formulation of the problem
is presented. The relationéhip between the min-max problem and the
so-céiled "differential game" is indicated. In the remainder of the
chapter, the resulté of an investigation of the min-max problem are

described. By considering generai linear systems and specific
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performance indices, it has been possible to make a complete analysis of

several problems.

3.2 Formulation of the Min-Max Problem

In this section, a min-max problem is formulated for a general
nonlinear dynamic system. The formulation begins by specifying the
system vector differential equation

x(t) = £(x, t, u, ¥) (3.1)
where X is an n-vector of state variables for the system, E(t) is an
m~vector control, and _\_r(t) ig an r-vector disturbance acting on the
system. The system is to be judged in terms of the performance index

T
J(lco) to: T3 u, _Y_) =j‘ S(}E: t, u, X) dt

t
o

+ 6(x(T),T) (3.2)
vhere g and G are scalar functions. The initial state X, is arbitrary
but fixed. The initial and terminal times to and T are also fixed.

Let § and S be suitably defined constraint sets for u and v. We
shall consider th: controller g(gg,t) to be a member of the class Cu if
along a trajectory }_(t) which is a solution of -

x(t) = £(x, t, U(x,t), ¥) (3.3)

Ye Sv’ the relationship

u(t) = U(x(t),t) (3.4)
results in u(t) ¢ S, It is assumed that if U(x,t) ¢ C_» then
max J(E.o’ o Ts U(x,t), v) (3.5)
Ye S,

exists. Maximization here, is meant in the same sense as in Chapter 2.

That is, the disturbance v(t) maximizes the functional in (3.5) subject




to the differential equation in (3.3). Thus the quantity in (3.5)
represents the worst case disturbance value of the performance index in
(3.2) for the controller U(x,t).

With these preliminaries completed, the min-max problem may now be
stated as follows: Determine a cont;ollgr u* = g*(g,t) ¢ C, such that

max  J(x, t» T; UX(x,t), ¥) g max J(x, v, T; U(x,t), ¥v) (3.6)
Ye S, Ye S,

for all U(x,t) ¢ C,- Thus the problem is to determine a controller
U*(x,t) which will-result in the smallest worst case value of the
performance index in (3.2).

It is noted that the problem implied by (3.5) is a one sided
maximization problem. It is convenient for analysis purposes to think
of the maximizing disturbance as a function of state. Actually this
function will also depend on U(x,t). Hence in defining a worst case
disturbance feedback function, a particular U(x,t) must be specified.
Define v* = V¥(x,t) as the maximizing disturbance for the functional

a(x,, b, T BH(xt), ¥) (3.7)

With these definitions in mind, the following relationships should

be self-evident.

min max J(x, t, T3 W, v) =max J(x, t, T; u*, v) (3.8)
Ueg S Ve S ve 8
= a - y = X

min max J(}Eo} to: T; uv, !) = J(EO: to: T; u¥, I*) (3-9)

BeS, YeS,

3.3 The Relationship Between the Min-Max Problem and the Differential
Game :

In spite of its intuitive appeal, the min-max problem formulated in

the last section has received almost no attention in the literature.
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However, a closely related problem, the so-called differential game, has
been the subject of much investigation in recent years [13-20].

In the differential game one attempts to determine "strategies"
ﬁ(ﬁ,t) and &Xg,t) from suitably defined classes of functions {U(x,t))}

and {V(x,t)} so that

J(?_C_o: to: T; H(_}S:t)) Y_(E;t))
< I(x 5 v T3 Ulx,t), ¥(x,t)), (3.10)

and

Iz, b0 T3 U(x,t), ¥(x,t))
2 Iz, v, T Ulx,t), (x,t)) (3.11)

A pair of strategies satisfying (3.10) and (3.11) is said to represent a
"saddle point."

It is easily shown that the differential game is a min-max problem.

Using (3.10)

I(xr tor T Ulx,t), V(x,t))

< max J(x , t_, T; Ulx,t), v) (3.12)
Ye S,

-—

It is clear from (3.11) that

Izt T3 Ulxit), Vxt))

= max J(zb, to’ T Q(E,t),‘x) (3.13)
Ye S, '

Combining (3.12) and (3.13) one finds that

max J(EO, to’ T; U(_J_E;t): X)
Ye S,
< max J(go, to, T; g(g,t),‘z) (3.14)
Ye S,
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By comparing (3.14) with (3.6) it .is readily concluded that the solution
to the differential game is also the solution to the min-max problem.
It should be pointed out that the reverse is not necegsarily true. That
is, one may formulate a min-max problem which has a éolution, while the
corresponding differential game may have no solution.t However, if the
scalars g and G in the performance index in (3.2) and the elements of
the vector f in (3.1) are separable functions of u and v, the
corresponding min-max problem and differential game are equivalent [13].
In the following study of min-max problems for linear systems, we
shall rely primarily on intuitive arguments to support our claims.
Continued use is made of the Principle of Optimaiity [12]. In Appendix
B, this principle is used to formally derive a partial differential
equation (Issacs' "main equation™ [13]) which will be used in the next

section.

3.4 A Min-Max Problem with an Unconstrained Disturbance

It is well-known that the linear-planf quadratic perfdrmance
criteria minimization problem, in which’the square of the control appears
in the performance index, is one of tﬁe few general minimization problems
in which‘an optimal feedback control solution can readily be obtained;
Since a min-max control must be feedback, it seems reasonable to first
study the min-max analoé of this minimization problem.

Let the system to be studiedvbe described by the Aifferential

equation

*For an example, see [23];
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x=A(t) x +B(t) u+c(t) v te [t,,T] (3.15)

where x is a n-vector describing the state of the system, u is an m-vector

of controls and v is an r-vector of disturbances acting on the system.
A(t), B(t) and C(t) are piecewise-continuous time-varying matrices on

[to,T] with appropriate dimensions. It is assumed that ue Su and

Ye S, where Su and S are subsets of the set of piecewise-continuous

— ——

vector functions defined on [to,T].
The performance criterion to be used is of the form

1 oT
I(x s tor T5 B, z)=§j't (u' Dyu-y D, v+x' 88X
o

x'(T) M x(T) (3.16)

+

o

where 21, E%, Q and M are constant, symmetric matrices with appropriate
dimensions; D and 22 are positive-definite and Q and M are positive-
semidefinite. The other aspects of this problem are as formulated in
Section 3.2.

In the analogous minimization problem, the control is weighted in
the performance index to insure the existence of a minimizing solution.
Since in the min-max problem, the disturbance is presumed to maximize
the performance index, it too must be weighted in the performance index
if there is to be any hope for the existence of a min-max solution. The
reason for the negative weighting is obvious since v maximizes.

A pursuit-evasion problem which is basically the same
mathematical problem as the one férmulated above with Q = O, has been
studied in [17]. With some minor variation, the results which follow
are essentiglly the same as those in the reference.

To study this problem it is convenient to use the min-max partial

differential equation derived in Appendix B. Assuming that F(x(t),t) is
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the min-max return for a process starting at time t ¢ [to,'l‘] in state

x(t), one may write

s ’ ¢ ’ = 7 ¢ 1 - ! ’
mn  mex {ELAx+EBu+ECy+jlxex+y u-v Dl
Ue Su ve S :

Performing the indicated min-max operations one obtains

ll.* = - D-l

14
D B E

E .
-1 } (3.18)
- 4

The inverses of D, and D, exist since they are both positive definite.
Substituting the expressions in (3.18) into (3.17), the resulting

partial differential equation is

’ l ’ - l 4 - =
EAx+3x' Qx-FEDE +F =0 (3.19)
where
D=BD'R -C D & (3-20)

The boundary condition for (3.19) (see Appendix B) is
F(x(1),T) =3 /(1) M x(T) (3-21)
Consider as a possible form for F(g(t),t) the expression
P(x(t),6) = 2 x(8) (t) x(8);  B(t) = P’ (t) (3.22)
From (3.21) it is clear that the boundary condition will be satisfied if
B(T) =M (3.23)
if -;'— x’(7) B(7) x(7) is the min-max return at time T ¢ [t ,T], then
using (3.19) it is readily established that P(t) must satisfy
P=-AP-PA+EDR-Q (3-24)

on [T,TJ .
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The expression in (3.2%) is immediately recognized as a Riccati
equation. Kalman [30,31] has pointed out that the solution to a Riccati
equation on a finite time inteérval may not exist due to the phenomenon of

t
finite escape time, i.e., some of the elements of P may go to infinity

on the finite interval [to,T].

If at some time tl,e [to,T) a finite escape occurs,’ this means that
the min-max return approaches infinity as 7 approaches tl (assuming the
return exists for T > tl). In’terms of the performance index, a finite
escape simply means that the negative weighting of v is not sufficient
to insure a bounded maximizing disturbance; i.e., a maximum with respect
to v does not exist for T S.tl‘

It is of interest to know under what conditions a finite escape
will not occur. Kalmaﬁ {30] has shown that the solution of (3.24) will
exist on [7,T] if the matrix D is positive-semidefinite on [+,T].

Though sufficient, this restriction on D is not always necessary as
will be illustrated in an example below.

To work examples analytically* it is convenient to use the follow-
ing transformation [30]. On the interval (7,T] where P(t) exists, let

B(-t) = 2(t) X 1(t)
where Z(t) and ¥(t) are nxn matrices satisfying

=A'Z2+QY; 2(0) = M

-AY; ¥(0) = I (identity)

ISD

e
"

I

1N

*The gimilarity between a point at which a finite escape occurs and a
conjugate point (from the Jacobi condition in the calculus of variations
[21]) has been noted in [1T7].
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on (1 »T}. The above equations are linear and for constant A, Q and
D may be solved using Laplace transforms. This approach has been used
in obtaining the analytic solutions for Example 3.4.1.

Example 3.4.1

Consider the system

ety

5(2 =Q uz + v

and the performance index
s 3T Od e e -1 e

Clearly

mef 0 1\N.._¢1 O §\.._(1 O

"A“( 0 o) ’9‘( 0 az-z) ’9‘( 0 o)
Congider first the solution for & = 3'}'?. The matrix D is positive-
definite for this value of &. The corresponding elements of the _Ij
matrix are

=k A+ (ginh A (Sosn A )"
py6) = oy [ 3G (stn g ) (ven ) ]

P, () =5-(]'{7: %z + sinhz/—%j
P, (1) =A—(];.‘-5: —g-(sinhﬁ) (cosh/—%) - x]
AQ) =%2 +-11;+-Ecosh2ﬁ

where ) = T-t. Inspection of A(k) indicates that it is non-zero for

all ). Thus the elements of P remain finite for t ¢ [to,'l‘]. Rote that

Tmay be infinite.

Now consider the solution for a = /2. For this value of @, D is

positive- semidefinite. The elements of the P matrix are
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1 .
Pll(x) = ZYKT sinh )
P_(\) = —= [coshx - 1]
1z AQL)

1 .
PZZ()‘) = m[)\ cogh ) - ginh )\]

A(N) = cosh )
It is clear that A(A) > O for all \. The elements of P will remain

finite for all t ¢ {to,T] provided T < es.
As a final example, consider the solution for the case & = 0. For
this case D is indefinite and there is a possibility of a finite escape.

The elements of the P matrix are

Pll(x) = éﬁﬁ[(cos A)(cosh /2 1) - s2(sinh /2 3 )(cos x)]
Plz(x) = ﬁy[(cos A)(cosh /2 ) + 2 s2(sin 3 )(sinh /2 3) -1]
PZB(X) = gz%xj-[(sin A)(cosh /2 1) -‘7% (cos A )(sinh /2 x)]

alx) = %[1& + 5(cos A )(cosh /2 A) +/2(sin })(sinh /2 )\)]

The first posgitive zero.of A(K) occureg at roughly Al = 2.56. Thus for

T < 2.56, the min-max problem with & = O has a solution. However, if

T > 2.56, no solution existe due to the finite escape at t, =1T- 2.56.
In addition to existence problems, it should be pointed out that

there is another aspect of the problem formulated in this section

which is undesirable from an engineering point of view. Note that if a

solution exists, from (3.18) the worst case disturbance is

toRx (3.25)

¥ =D

Suppose the system is at rest, i.e., x = O. The expression for v¥ in
'Y » X Xp Y

CI

fav)

(3.25) implies that the worst case disturbance will be zero. Thus if
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the system is at rest, the disturbance will find it more profitable to
leave the system at rest than to disturb it. Though mathematically.
this is understandable, from a physical point of view it makes no sense
at all. The reason why V¥ is of the form shown in (3.25) is easily
traced to the negative weighting of v in the performance index. Thusr
while on the one hand this weighting is necesgsary to keep thg worst case
disturbance bounded, on the other it leads to a meaningless result for
v,

If the disturbance is not weighted in the performance index, it
must obviously be magnitude constrained by some other means. A logical
way to do this is to assume that v is bounded at the outset.

Though this modification is both meaningful and intuitively
appealing, it leads to a considerably more difficult type of min-max
problem than the one considered in this section. This will become

apparent from the analysis which follows.

3.5 A Min-Max Problem with a Magnitude Constrained Disturbance

For the problem studied in this section, consider the system

described by

x = A(t) x +b(t) u +c(t) v te [t,,T) (3.26)
where u and v are both scala:s, u being the control and v being a
disturbance acting on the system. As in the last section, x is an
n-vector describing the state of the gystem and{é(t) is a piecewise-~
continuous nxn matrix defined on [to,T]. The vectors b(t) and c(t) are
continuous on [to,T]. It is assumed that u ¢ Su and Vv ¢ Sv’ where Su is
the set of all piecewise-continuous time functions on [to,T) and Sv is

the set of piecewise-continuous time functions satisfying
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v1(t) g v(t) < y,(t)

(3.27)

v1(t) < v (%)

The functions Yl(t) and Yz(t) are continuous on [t_,T].
Define the system error function .

E(x(t)) = |E'x(t)| (3.28)
where K is a constant n-vector. Consider a performance index of the
form

T 1 2 1.2
Iz, o T3, V) = j‘t 3 wat + 2 E°(x(T)) (3-29)
o

In all other respects, the min-max problem formulated here is the same as
the general min-max problem described in Section 3.2.

A complete analysis of this problem is made here. 1In order to
describe the results it will be necessary to define several pertinent
time functions.

Let R(t) be an n-vector satisfying

R(E) = - A7 (8) R(s) + 3 [2'(8) R(t)) R(t); R(T) =K (3.30)
Next define the scalars 6(t) and 2(t) as solutions of
8(t) = 2(&' (6) b))% 8(t) - 3 [y,(t) +yy(£)] B/ (t) e(t) 5 6(T) = 0
(3.31)

and

#(t)

2 (& (8) 2(6))* B8) - 3 Typ(8) - vy (B[R (8) &(8)]5 B(T) = 0
| ' (3.32)

Finally, define the scalar g(t) as the solution of
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0 if g(t) =0 and
F(6) = - & (& (1) B(E))? £(s) ctther 8() > 0 or (3.33)
t) = - = (R'(t t) +4 > .

: z = 2T L R () o(t) = 0

8(t)  Otherwise

with g(T) = 0. The scalar 8(t) is defined as

85(t) = %m'(t) c(8)] Typ(t) - 1 ()3 - (B'(¢) b(t))% g(t)  (3.38)

- ALl of the above definitions hold on [t _,T]. Note that g(t) and g(t)

are non-negative on the problem intefvﬁl. Note also thgt all of ther
above{fupctions are independént of state.“ |
Having defined the above functions, the results of the analysis
may now be described.
Theorem 3.1
Let the general min-max problem be defined as in Section 3.2
and let (3.26) to (3.29) define the specific problem. The disturbance
Ve Sv is magnitude constrhined. If for some t ¢ [tO,T] the state
x(t) satisfies
|B(t) x(t) + o(t)] > £(¢) (3.35)
then the following statements'hold;
1. The min-max return function F(x(t),t) which is defined by

F(x(t),t) = min max J(x(t), t, T; u, v)
ue Sﬁ Ve Sv

is given by
F(x(t),t) = 3 [|B'(8) x(t) + o(t)| +#(t)3® (3.36)
2. The min-max control u* is given by
u*(x(t),t) = - B'(t) b(t) [#(t) sen(0,(R’(t) x(t) + 6(t)))

+ R/ (t) x(t) +o(t)] - (3.37)
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3. The worst case disturbance is of the form

v(x(t),£) = 5 [y, (t) - y1(£)] sen(0,R'(t) o(t))

sgn(@,R' (£) x(t) + 8(6)) + 3 [y, (8) +y1(£)] (3.38)

where the constant q may be either 1 or -1.

The proof of this theorem is given in Appendix C.

Note that since q may be 1 or -1, v* is not unique. In view of the
symmetry in the problem, this is not unexpected. It should be observed,
however, that the min-max value of the performance index is unique, as
is the control u*(z(t),t).

If the results of Theorem 3.1 represents the min-max solution when

IR/ (£) x(£) +6(t)| > g(t) (3.39)
what is the solution for those poihts in state space for which (3.39)
does not hold? The answer, which is somewhat surprising, is that under
such circumstances a min-max solution does not exist.
Theorem 3.2

For the min-max problem defined by (3.26) to (3.29), if for
some state x(t), t e R
|R () x(t) + o(t)| < g(t) (3.40)

then there is no solution to the problem.*

The proof of this theorem is presented in Appendix C.
On the surface, one would not expect to encounter any existence
difficulties with this problem since v is bounded and the problem time

T-t_ is finite. Nevertheless, in regions of state space where (3.35)

TBy no solution it is meant that a min-max control u*(x(t),t) does not
exist for all points in state space where (3.40) holds.
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does not hold, min-max solutiong do not exist. There does not appear to
be any intuitively obvious reason why this is so. Hoyever, in studying
the proof of Theorem 3.2, one comes tb suspect that the existence
problem ig in part due to the fact that the control is weighted in the
performance index. This suspicion is justified by the results of the next
section in which the control is removed from the performance index and
magnitude constrained. |

The following example should help to illustrate the results of this
section. |

Example 3.5.1

Consider the system

X, = X

1 2

iz =u+v
where

]vl <1

The performance index is

From equation (3.30) it is noted that the elements of R satisfy

1.2
R R(1) =2

Ry=- R +3 R R, (T)

It can be easily verified that

BN 1 1
R(t) =( Rz) " +%(T_t)3]§ ( T-t)

"
o

Because of the symmetric bounds on v

o(t) = 0
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Using (3.32)
(1-t)°
2 [1 +-§(T—1;)3]é

#(t) =

With some effort, it may be determined that

o ’ for T-t < tl‘
£(t) =< ) (16)2
1 -
1+ =(T-t)~ t, - = for T-t > t
eseo [y z(l+%(T-t)3)] '
where
1
t, = 53—
1 %/6

This problem will have a min-max solution for all states x(t) if

T < t, since g(t)

1]

1 0 on [o,tlj. If T~ tl’ only for the states

satisfying

(1-t)°
|2 (£) + (T-t) x,(t)] 2‘( 1T 2(1 +%(T-t)3 )

will a min-max solution exist. Under these circumstances F, u¥* and v¥
are given by the expressions in Theorem 3.1. If the above inequality
does not hold and T > tl there is no min-max solution to the problem.
In genera;, a control which minimizes the worst case value of the
performance index in (3.29) cannot be found for all points in (x,t)
space. For those states lying in regions of state space where a
min-max solution does not exist one would have to determine the control
baced on some other criteria. However, rather than do this, it seems
more reasonable to consider a modification of the original problem:
By removing the control from the performance index in (3.29) and

appropriately bounding it, the existence difficulties associated with




58

this problem disappear. This approach is taken in the next section.

3.6 A Min-Max Problem ﬁith Magnitude Constrained Control and Disturbance

In this section it is assumed that the governed by the vector
differential equation
x=A(t) x +b(t) u+c(t) v te [t,,T] (3.41)
where u ¢ Su and v ¢ Sv. The symbols x, _A‘, b, ¢, u, v and Sv have the
same meanings as in the last section. The constraint set Su is defined
as the set of all piecewise-continuous functions on [to,T] with
magnitudeé boundéd bykunity. For a performance index consider
I(xy tor T u, V) = 5 B (x(T)) (3.42)
where
B(x(t)) = |K'x(t)] (3.43)
In all other respects the problem to be)studied in this section is the
same as the general min-max problem formulated in Section 3.2.
In order to describe the solution to this problem, several time
functions must first be defined.
Let R(t) be an n-vector satisfying
R(t) = - a°(¢) R(t);  R(T) =K (3.44)
Define the scalars 6(t) and @(t) as solutions of . ‘
8(t) = - 2 [y, (8) +y,(8)] B’ (t) e(t); 6(T) = 0 (3.45)

and
DB = - Iy () - v (1R &) e(8)] + |B (6) B(t)] 3
o gm=o (3.46)

Finally, define the scalar g(t) as the solution of
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0 if g(t) = 0 and

£(t) = | 8(t) > 0 (3.47)
8(t) Otherwise

with £(T) = 0. The scalar &(t) is defined as _
8(8) = 5 [yp(t) - v (D[R (6) e(8)] - |R'(8) B(6)]  (3.48)
"All of the above definitions hold on [to,T]. o . ‘
The symbols R, &, 6, g and & have purposely been used in both this
section and the last one to facilitate comparisons. It should be
pointed out that these symbols represent gsimilar quantities in the two
sections, not the same quantities.
As a firgt step in describing the solution to the min-max problem
in this section, the following theorem is presented:
Theorem 3.3
Let the general min-max problem be as defined in Section 3.2
and let (3.4%1) to (3.43) ‘defire “the‘specific problem. Both u ¢ S,
and v'eg §, are magnitude constrainéd. If for ‘some 'teg {Et,d%‘l‘]
TR () x(8) + 6(t)] > £(t) 1(3-49)
then “the following statements hold: ‘ '
1. The min-max return function fér the process is given by
Fx(t),5) = 2 [|B'(+) x(t) + o(t)| + #(+)7? (3.50)
2. The min-max control ig A ‘
w(x(t),8) = - sen(o,R’ (t) b() (R’ (£) x(t) +6(¢)))  (3.51)
3. The worst case disturbance is of the form - ‘ .
W(x(£),8) = 2 [y, (8) - y; (£)] san(o,B’ (8) e(t))
sen(Q,B' (8) x(8) + 6(8)) +3 [yp(t) +y,(8)] (3-52)

vhere the constant q may be either 1 or -1.
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The proof of this theorem may be found in Appendix C.

It is interesting t0 note the similarity between the results in the
above'theorem and those in Theorem 3.1. In both cases, the expressions
for F and v¥* are of the same form.

The important difference between the two problems become apparent
when the case in whith (3.49) does not hold (i.e., Lg’(t)‘z(t) + e(t)|
< £(t)) is considered. In studying the analogous situation in the
previous problem (see (3.40)), it was concluded that the min-max solution
did not exist. Here a more palatable result has been obtained as

evidenced by the following theorem.

ﬁTheorem 3.4

At all points in (x,t) space satisfying
|R(t) x(t) + o(t)] < &(t)
the min-max return F(x(t),t) is given by
F(x(t),8) = 3 (%) o (3.53)
where % is the first_éefo of’g(T) on?ﬁﬁblinterfal [t;Tj. So long
as the above inequality holds,?thé chofce 6f ue Su and v ¢ Sv

will have no effect on the valiie -6f the min-ma¥k ‘return.

A proof of this theorem is given in'Appéndix C.

Theorem 3.4 indicates that in a region in state space, the choice
of control has no effect on the worst case value of the system
performance index. When the state lies in this regivn, one might
consider choosing the control based‘on some secondary performance index.

The following examples are presented to illustrate the results of

this section.
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Example 3.6.1

Consider the system

il =%, -V

iz = - 25 Xy - 2»x2 +v+2au
where

|l < 1

vl <2

Let the performance index be
| J(x, 0y 33w, V) = % Xi(B)

The control u is given by (3.51) whenever |§(t) x(t) +o(t)| = g(t)
and is chosen to be zero otherwise. Data for a trajectory startiné at
x, = O and resilting from the disturbance forcing function v given by
(3.52), is shown in Figure 3.1.

The magnitude of xl(3) is the worst case value;‘iae-, there iz no
v ¢ S, which can result in a larger value for |x1(3)|. In addition,
there is no admissable controller which will result in a smaller worst
cade value.

Exgmple 3.6.2

It is interesting to consider the same problem as above with the

roles of the control and the disturbance interchanged. Specifically,

let

x2=-25xl-2x2+u+2v

lof <2
vl <1
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Figure 3.1. Trajectory data for Example 3.6.1. .
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and
‘ 1 2
J(x5 05 35w, V) =5 xl(3)

As in the previous example, u is given by (3.51) for |g(t) x(t) + e(t)‘
2.§(t) and zero otherwise. The initial state is still zero and v is
given by (3.52) for the entire trajectory. The regulting curveg for
Xy s u and v are shown in Figure 3.2.

It is immediately observed that the final value of xl(t) is zero.
This means that for any disturbance bounded by unity, thé controller u¥

will drive xl(T) to zero! Clearly no other controller can do better.

3.7 Summary

The material presented in this chapter represents the results of
an investigation of min-max problems for linear systems. Three problems
have been studied, the major differences among them being in the form of
the performance index used in each.

In the first problem the performance index contains a positively
weighted control and a negatively weighted disturbance. It has been
noted that the min-max solution to this problem does not always exist
due to the phenomenon of finite escape time. A more serious
criticism of the problem is that it leads to a form for the maximizing
disturbance (a linear function of state) which makes little sense.

In an attempt to avoid existence difficulties and to obtain more
meaningful results, in the next problem studied the magnitude of the
disturbance is constrained. A performance index containing the integral
of the square of the control plus the square of the terminal value of a
system error is used. A surprising result is that the solution to this

min-max problem does not exist for all points in state space.
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In the third problem studied, both the ébntrbirand_thg disturbance
are magnitude constrained. The performanée~index is the square of the
terminal value of a system error. A complete solution to th;s pr?piem
has been presented. It was shown that in some regions of‘state space,

the choice of control has no effect on the min-max value of the

performance index.
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CHAPTER 4

CONCLUSION

4.1 Summary and Conclusions

In the preceding chapters, two problems arising from the worst
case disturbance approach have been investigate&. In the first of these,
the error analysis problem of Chapter 2, the .sbject has been to determine
the worst case (maximum) value of a system performance index (a quadratic
function of state evaluated at a fixed time) dge to a bounded disturbance
acting on a general linear system. The approach taken in ‘studying this
problem hag been to relate this general performance index to a specihl
one for which the corresponding optimal (worst camze) return function
could be found. This has led to what is undoubtedly’the major
contribution of this work. It has been shown,(Theorem'2.3) that the
general error analysis problem can be soived by maximizing the return for
the special problem with respect to the components of & vector of wunit
length.

In addition to simplifying the problem and providing further
insight into its natufe through a geometric interpretation, this
contribution has led to several other results worthy of mentidn. First,
the existence of a maximizing solution is clearly established. Second,

the qnestion of what the solution is on a singular surface is completely

answered. Third, the relationship between a local meximum of the return
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function F and a solution gatisfying the necessary conditions of the

Maximum Principle (Theorem 2.1 and 2.2) is made clear.

From the results presented in Chapter 2, it has been noted that F
is a multimodal function. To determine the global maximum of this
function with a reasonable amount of computation, an efficient local
hill-climbing technique is required. By recognizing that the return F
iv a convex function, it has been possible to develop an algorithm in
which convergence to a local maximum is guaranteed. It has been noted
that the cost of computation per iteration is small because no integration
is required.

Chapter 3 has been devoted to a study of the min-max problem. The
problem has been to determine a.feedback controller having associated
with it the smallest worst case value of a prescribed system performance
index. The chapter contains the results of an investigation of min-max
problems involving linear systems and three different types of
performance indices. For the first of these problems, it has been noted
that a solution might not exist. In addition, it has been pointed out
that the problem leads to a meaningless form for the worst case
disturbance. Unexpectedly, existence difficulties also occurred in the
second problem for states lying in certain regions of (x,t) space. For
the third problem studied, a complete min-max solution has been presented.

A survey of the literature indicates that there are a significant
number of results for differential games at the two ends of the research
gpectrum. At one end there is an elaborate general theory, as evidenced
by the work reported in [14-16]. Although this theory is of great value

in providing the basic tools needed to study differential games, it does




not lead to any simple method for actually solving problems.

At the other end of the spectrum, there are a number of specific
numerical examples which have been solved [13,20]. Though these
examples are most hélpful'in providing insight into the nature of the
differential game, they are too specific to be of general use to the
control enginéer.

The results reported in Chapter 3 lie somewhere between these two
extremes. Emphasis has been placed on the problem of determining a
min-max controller for a general linear system. Since this problem is
quite difficult and since the literature contains few results at this
level, any definitive statements about the solutions of min-max problems
are considered to be worthwhile contributions. Theorems 3.1 to 3.4 are
cases in point. These theorems should prove useful in furthering the

development of a general min-max theory for linear systems.

4.2 Recommendations for Further Study

Since the proof of Theorem 2.3 in Chapter 2 does not depend on the
assumption that the plant being analyzed is linear, the theorem also
holds for nonlinear systems. Of course, to make use of the theorem one
must find the returh function F(zo, to, g). Although this {s a
formidable problem for a general nonlinear system, it is conceivable
that for special classes of systems (i.e., possibly systemg with a
single nonlinearity of a particular type) this return cay be
determined. Since the extension of the results of Chapter 2 to nonlinear
systems would be of significant value, this problem js one which further

research should be undertaken.
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A second problem worthy of investigation can be described as

follows. Consider. the functionals

I(x, t5 T3 V)”‘-%_Js' (T) @ x'(T) (k.1)
and
T, by T w V) =3 [x(0) N (4.2)

where O ¢ q° (see Chapter 2 for definitions of ®Q, M and qQ’) and x(t)
is the state of the system described by equation (3.41) in Section 3.6.
Theorems 3.3 and 3.4 may be used to determine the min-max return

F(lco, to @) = min max 3(50, tos T u, v)
u e Su Ve SV

It is clear from Theorem 2.3 that
. ;nigu , xcnajscv J(Eo, tos Ts u, v) = ] :a::r F(go, o a)

= (4.3)
when _b_(t) = 0, since the resulting problem involves only maximization
with respect to v. Using arguments similar to those used in the proof
of Theorem 2.3, one may show that (4.3) also holds for the case
b(t) # 0, c(t) = 0. The obvious question is whether (4.3) holds when
neither b(t) nor c(t) are zero; i.e., for the min-max problem. Since
an answer to this question would represent a significant contribution to
the general theory of min-max problems for linear systems, it is

suggested as a subject for further study.
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APPENDIX A
PROPERTIES OF } (t,a)

In this appendix, it will be shown that the vector L@t ,g) defined

in Chapter 2 is continuous on [to,T] and satisfies the adjoint equation

of the Maximum Principle.

A.1 A Continuous Time-Function

In this section it will be shown that L(t ,g) is continuous on
[t,,T)- Using (2.35), we may write

A(t,2) = B(t) of |y(t)] + #(t,a)] sen[1,¥(t)] (A.1)

‘where

y(t) = x'(6,a) P(t) a + o(t,a) (A.2)
Since P(t), @, y(t) and #(t,2) are all continuous on [to-,T], to show

that ) (t,a) is continuox}sf’it will be sufficient to show that either

y(t) 2 0 (A.3)
on [to,T], or - “
y(t);g 0 (A.4)

on [to,’l‘] . Let us consider the time-derivative of y(t). After some

manipulation, it may be determined that

. 1

7(t) = 5 [y, (£) - y;(£)] |2’ (t) B(t) @}sen(1,¥(t)) (a-5)
It follows from this expression that

¥(t) > O whenever y(t) > O



Th

and

y(t) « O whenever y(t) < O
These inequalities imply that y(t) must satisfy either (A.3) or (a.})

Thus ) (t,a) is continuous on [t,,T-

A.2 A Solution of the Maximum Principle Equations

In view of the discussion in the last section, it may be easily
established that ) (t,a) is differentiable on (t,»T). Thus we proceed to

write

B(t) of|y(t)]| + #(¢,0)] =en[1,y(t)]

P(t) ofy(t) sen[1,y(t)] + #(t,9] =en[1,y(t)]

- A’ (t) B(t) of |y(t)] + #(¢,2)] sen[1,y(t))

+ B(t) o3 (y,(8) - y ()]’ (t) B(t) @ + B(t,@)] (A.6)

But from (2.33) it is observed that the second term in the above

A(t,a)

+

1

expression is zero. Using this fact and equation (A.1l) it is clear
that
(6,2 = - A’ () p(t,2) (A.7)

Thus L(t:g) satisfies the adjoint equation of the Maximum Principle.
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APPENDIX B

THE MIN-MAX PARTIAL DIFFERENTIAL EQUATION

In this appendix, a partial differention equation similar to tpe
classical Hamilton-Jacobi equation of the calculus of variations [21)]
is derived. The result obtained is not new (i.e., see [13]) and the
derivation is not rigorous. Nevertheless, a derivation based on the
Principle of Optimality [12] is intuitively appealing and will therefore
add further to the understanding of the min-max problem.

The development starts with the definition of a min-max return
function. With reference to the problem formulated in Section 3.2,
define F(x(t),t) as the min-max return from a process starting at time

t e [t,,T] in state x(t). That is

F(x(t),t) = min_max (7 &(x, %, u, ¥) 4t *+ 6(x(1),1)] (8.1)
u(r) ¥(v) "¢ S
Te [t:T]

It is understood that u ¢ Su and v ¢ Sv. We shall assume that f, F, g

and g are piecewise-continuous time functions along a min-max trajectory.

The expression for F(x(t),t) above, may also be written as

F(x(t),t) = ;ﬁl) Ea(u;) (I, + 1] FB.Z?
Te [(t,T]
where
Il = Il(?_((t); ty, T 443 B(T);'I(T)i Te [t,t +A])
= J‘t'*'ﬁ' g(_)s, t, u, v) dt (B.3)
t ' o
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and
I, = L(x(t +a)s t +4, T3 u(1), ¥(1); 7 ¢ [t +4,T])
=17 elx s w ¥ at + a(x(D),T) (B.4)
t +A

Since Il is ihdependent of v(T) for T e [t +4A,T] we may write

x(t),t) = min I | I .
F(x(t),t) E(T) Irgi:) LI, *z(’g:’)‘ 2] (B.5)

Te LB o gttt va] T, e [t +a,T)
Now consider E(Tz), TZ ¢ 't +A,T). As stipulated in the formulation
of the problem, E(Tz) is to be a function of _;E(Tz)- This means that
E(Tz) has knowledge of the past history of X(Tl)’ T e [t,t +A]. Hence
the min operation for 11_(12) and the max operation for y_(Tl) may be
interchanged. The resulfing expression ig

F(x(t),t) =min  max min [I, + max L] (B.6)
u(r) x(7)) u(7,) v(t,)

Tle [t,t +A) Tze [t +4,T) Tge [t +4,T]

But since I, doesn't depend upon E(Tz) we may write

F(x(t),t) = min max [I, + min max 1] (B-7)
a(r) w(r) T ou(r) w(r,) P
Tle_[t:t *A] .Tze‘[t +A,T]

The expression in (B.T7) may be taken as a statement of the Principle of
Optimality [12] for the min-max problem.
From (B.2) through (B.4) and (B.7) it is clear that

P(x(6),6) = min  max [[° "2 gz, t, u, v) a6 + F(x(t +4), t +4)]
u(ry) v(7y) ¢ |
T ¢ [tst + ] (B.8)

Since é, F and F are piecewise-continuous we may expand the right side

of (B.8) in a Taylor series. Thus
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F(x(t),t) = min max [A g(x, t, u, v) + Wx(t),t) + F(x(t),t) + °A2]

u(t,) v(7
-1 ! (5.9)
T, e [t,t *4]
where
0p2
Lim 8 -0 o (B.10).
A -t 0 A

We may now write

F(x(t) t) = F(x(t),t) + min max [ag(x, t, u, ¥v) +, ﬁ(_:g(t),‘t) + OAZJ
u(‘r v(T

17 -1
B.11
Therefore
min A &(x, t, u, v) +4 F(x(t) t) + OA?j 0 (B.12)
u(T ) v(r )
l (4 [t t+ A]
Dividing by Ao and then letting p go to zero
min  max [g(x, t, u, ¥) + F(x(t),t)] = (B.13)
u(t) v(t)
Noting that
x(t),8) = B/ (x(t),8) % + F,(x(t),1)
=E £(x ¢ 8, ¥) + Fy (B.14)
the expression in (B.13) may now be written as
min max [g(x, t, u, v) + E f(x, t, u, x) +F] =0
u(t) v(t) o
(B:15)

We shall gefer to (B.15) as the min-max partial differentisl e@uétion.
Using (B.1l), it is noted that
F(x(1),T) = G(x(T),T) (B.16)

and thus

E (x(1),1) = G (x(1),1)) (B.17)




The expression in (B.l7) is a boundary condition for the min-max

partial differential equation.

T8
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APPENDIX C
PROOFS OF THEOREMS 3.1 to 3.4
In thid appendix, the proofs of Theorems 3.1 through 3.4 are

presented. The notation used here is consistent with that used in

Section 3.5 and 3.6 of-Chapter 3.

C.1 Proof of Theorem 3.1

At least two different approaches may be used to prove Theorem 3.1.
The first would involve showing that the return F(x(t),t) defined in
(3.36) does indeed satisfy the min-max partial differential equation
presented in Appendix B. Statements 2 and 3 of the theorem would then
follow directly. In the proof that follows, a somewhat different
approach 1s used because it is felt that it will lead to a better
understanding of the problem.

Let us start by making several simplifying transformatiohs. First
define the scalar y(t) as

y(t) = B(t) [R(t) x(t) +6(t)] te [t,T] (¢.1)

where R(t) and 6(t) are defined in (3.30) and (3.31) and B(t) is a

scalar satisfying

[F @ b(r))? o]

B(t) =e ° o te [t,T) (c.2)




80

Next define the scalars'a and'; as

_ R/ (t) b(t)
u=u+R(t) b(t)(R(t) x +6(¢)) =u Y (0.3)

and

V= [v - %’(ya(t) + Yl(t))] [ Yth) ? ¥1(%) ] (c.u)

on [to,Tj. Let S; be the set of all piecewise-continuous time functions
on [t_,T] such that if v ¢ S then

|¥(t)] < 1 (c.5)
Note that v ¢ Sv-<a>'; ¢ S;. A similar statement holds for u and u.

Let
ya(t) - yl(t)

2

at) = st) 6 e[t,T] (c.6)

It is easily verified by differentiating the expression in (C.1) that

= B(t) B’(%) b(t) w + B(t) R/ (t) c(t) ¥ (e
For convenience we ghall refer to u and v as a "control" and a -
"disturbance" respectively. If we next define the functional

T(y(t)s v, T3 w, v) = 3(x(t ), 5, T5 u, v) (c.8)
then the performance index expressed in (3.29) may be written as

R'(t) b(t 2 2
J(Y(t )s t, T u, v) = 1'IT < &' (6) b(e) at L XAT)
t

TR Y 2
(c.9)
Since
min _max J(y(to) t , T3 H, ;)
Ueg S= Ve S
U
min wav (o0 Y w ) B
. G o}
ns S Ve o
u v

it will be sufficient to consider
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7/ -— . K X -
_in _max J(y(t), t, T; U, v)
5 ve 5= ° °
Ue 5y v
The minimizing control u*, and the maximizing disturbance v* may be
determined for t ¢ [7,T] € [t ,T] by considering the return
-f(Y(T)iT) =_min _ max E(Y(T)) T, T; E:“ ;)
ue S Ve S—
u v
R’ (t) b(t) 2
1l Jy— = - 2 VA gTZ
= min _ max = (u- y) dt + ]
ugs;l-ves-\-; 2‘]‘1 B(t) 2
(c.11)
This follows from the Principle of Optimality [12]. ©Now consider the
functional
I(y(t), 7, T; E: ;)
A, o RE® A c12)
= + [ — yv] - C.12
ZBZ(T) J'T 2 glt) ‘:
Note that for T =T
I(y(T)s T, T3 w, v) = I(¥(T), T, T5 u, V) (c.13)
Furthermore, by differentiating J(y(t), T, T; u, v) and
I(y(t), *, T3 u, V), it may easily be verified that
I(y(t)s t, T; W, V) = 3y(t), t, T3 W, V) (c.14)
at all points on [to »T]. Thus it must follow that
3(3’(""); T, T3 -‘I) -‘;) = I(y(7), T, T ;1-: ‘—’) (c.15)
2
T
F(y(r), 1) = L)
2" (7)
o @ R(E)ale) _ (c. 76)
+_ min _max[ (- + yv) dt] C.16,
Te S ve S [{z B(t)
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Assume now that the minimizing control u¥* is in a set of controls

*

's-ﬁc_ SE having the following properties:

1. u(y,t) = - u(-y,t) }

2. |ulypt)| 2 [ulyet)] it vyl 2 vy

(c.17)

on [t ,T). This aseumption will be justified shortly.

Let z(t,y(t)) representé a solution of (C.T) on [7,T] using any
u € S-E and any v € S;,- The initial point of this trajectory is taken as
2(1,y(1)) = y(1). Let z*(t,y(7)) be a solution of (C.7) using v = v*

We can now make the following statement.

ﬂff*

and any u €

Statement C.l.1l

IfF T e s%, then
R/(t) a(t)

n Tr u(z,t) | v 1 at
Sl [ 55 comskill
.[ [ (Z*,t) + | R’ (t) d(t) 2%| ] at (¢.18)
and B’ (t) d(+)

= sgr( 0, ——B(?r—) sgn(q,z*) 3 q=2t1 (c.19)
Note that v* is not unique since q may be 1 or -1. To prove this
statement we first note that
| 2%(t,y(7))| & |z(t,y(7)) (c.20)
for all t ¢ [7,T]. This follows directly from Property 1 in (C.17) and
an inspection of (C.7). It is clear from (C-20) and Property 2 in
(C.17) that

-2
_ max j‘T —-‘—L—l dt = J‘T P—-(%ﬁ‘l dt (¢.21)
T

Ve
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Again using (c.zO) and notihg the form of v* in (C.19), it is seen that

’ ) - ’

_ max J'T(u_%_’ﬁ_)_“ ;‘tdt zv)dt=IT|—L-%—yLzR ;tdt z*% | dt

VeS" T T )
v (c.22)

The results expressed in (C.18) and (C.19) follow directly from (C.21)

and (C.22).

; Henceforth we shall write (C.T) as

B(t) §"(t) b(t) u + B(t) R (t) a(t) v

y= .
= B(t) ®{t) b(t) u + B(t)|R' (t) a(t)|sen(a,y) (c.23)
and
- - - 2 =2 R/(t) a(t)
IJ(y(t), T, T; u, V*)=EYBZ%§+I$[% +|Wy|]dt

(c.24)

It is possible to write J as

- - _ 2
EGONER A =;Z§g_)l+¢(r) FLoNIY iG]

+2T7@E + B (1) b(t) (+) senlo,3))? at (c.25)
T - R

This may bE‘verifiéd using thé same arguments that were used to prove
the identity in (C.15).
Consider the control

u = - R’(t) b(t) #(t) sen(o,y) (c-26)
If this.contrqliis substituted into (C.23), the resulting differenhial _
equation is

¥ = - B(8) (& (¢) b(£)? () senlo,y)

+ B(6) | (+) a()] san(a,¥) (c-27)

Consider now some region g in (y,T) space. We shall say that y(7) g‘a g

if a forward solution of (¢.27) starting at y(7) exists on (7,T]. This
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leads to the following statement.

Statement C.1.2

If y(7) ¢ g, then the minimizing control u* is )
u* = - R’(t) b(t) #(t) sen(o,y) (c.28)
on (7,T] and
F(y(t), 7) = 3(y(7), 7, T5 u*, v¥)

x (%), ;a'(r)' %—é%% | +£—£—22'r (c.29)

2
26° ()

i

=

These results may be proved as follows. Since the only term in
(C.25) which depends upon u is the integral, and since u* clearly
minimizes this integral (i.e., the minimum value of the integral is
zero), u* must be the minimizing control. Note that u* ¢ SE-, as
previously assumed.

Our next effort will be to determine the region g. Let y*(t,y(t))
représent a forward solution of (C.27) on {7,T] starting at y(T).
Suppose that this solution exists on (7,t) where t ¢ (7,T]. If

*(t,y(t)) # 0, inspection of (C.27) indicates that y*(t,y(7)) will

exist on an interval to the right of t. Suppose now that y*(%,y(t)) = 0.

For a solution to exist beyond this point there must be an interval
('t',%) of finite length on which either R’(t) d(t) = O (implying that
y*(t,y(7)) & 0 on (£,t)) or |R () a(8)] » Bt (R (t) b(t))? (implying
that |y*(t,y('t))‘ # 0 on (?,:;), the sign of y* dépending on the choice
of g.). This statement follows directly from an inspection of (C.27).
If this statement holds for all T ¢ [7,T] where y*(t,y(T)) = O, then

y*(t,y(7)) will exist on [7,T].
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To determine © we sghall work backwards in timé from T. It is
claimed that there must be &h interval [t ,¥] on which elther
1. g'(t) a(t) =0 ,
or | } (c.30)
2. |B(5) a(t)] - #(t)(R() ()% 5 0 | |
This claim may bé easily proﬁed from an inspedtion of\(3.32) and (C.6)
Thus £6¢ any value of y(t), T ¢ [t,T],a solution y*(t,y(r)) will exist
on [T,T}. Define the function n(t) on [tl,ij as
n(t) = 0 (c.31)
It is obvious that y(7) ¢ R on [t,,T] if
|¥(7)] = n(%) (c.32)
Now consider a second interval [t,5t,) on which neither 1 nor 2 in
(c.30) héld. That is
IR’ (t) a(t)] - g(t)(®'(s) b(t)g O
H(t) a(t) #0

on [tzftl)" We know from thé preceding discussion that for a solution

} (c.33)

of (C.27) to exist on the entire interval (tz,tl), the forward solution
v*(t,y(7)) £ 0 for T ¢ [t,>t;) and t ¢ (7,t;). Define n(7) for each

Te [tzgﬁl) as the smallest value of |y(T)| for which y*(t,y(7)) exists
on (T,t4). THis smallést Value of |y(7)| will réeult in y*(t,,y(7)) = 0.
Thus n(T) may be ‘depernined on [t-z,tl) by ’s‘olﬂné (¢.27) bdckwards in
time - from tlvﬁith y(tl) = B. Sinte qﬁalﬁ;l; there are two solutions.

We are interested in the non-negative one; That is, on [tz,tl), n(T)

2

is the Abh-negative backward solution of (¢.27) starting at tl with
Y(tl) = 0. Thus for T Py [tz,T}, y(t) ¢ g if '
|7(1)| 2 n(7) (c.34)
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Now consider a third interval [t3,t2) on which either 1 or 2 in
(€.30) holds. From previous considerations, it is known that solutions
of (€.27) exist on (T,tz) for all y(7), T ¢ [t3,t2). However, for
y(7) ¢ R, solutions must exist on (T,Tj. Thus we must insure that
y(T) is such that L

|y*(t,,5(7))| 2 n(t,) (c.35)
Define n(T) on [t3,t2) as the smallest value of ‘y(T)| for which (0:35)
holds. Thus on [t3,t2),'n(T) is the non-negative backward solution of
(c.27) starting at y(t,) = n(t,). It is clear that y(7) ¢ R if
9] 2 0(e), 7 e [ty
Continuing in this way, one can define n(t) Mfor all t ¢ [tg,lj.
We present. the result as follows:

Statement C.1.3

For t ¢ [t,,T), y(t) e R if

|¥(t)! 2 n(t) | (G.36)
where
- B
0 if n(t) = O and either
B(t)= pwa =0 o
: |B (t)a(t)|-2(t) (B (t)(t))™>0
PO |B(a(0)]|-000) & (£)n(t))% Otherwise ]
(c.37)
‘and ' '
n(T) =0 (c.38)

The differential ,equation for n(t) follows directly from the preceding

discussion.
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A typical curve for n(t) is shown in (y,t) space in Figure C.1.
.The scalar 5(t) appearing in the figure is defined in equation (3.3&)._
The thick line represents n(t) and the thin lines are y(t) trajectories
inR. The dashed line in the figure is the mirror image of n(t) below
the t-axis, and also represents a boundary of g.

It may be easily determined that

g(t) = %%} ‘ (c.39)

where £(t) is defined in (3.33). Using this fact and equations (C.1) to
{(C.6), it is clear that the claims in Theorem 3.1 follow directly from

Statements ¢.1 to ¢.3.

C.2 Proof of Theorem 3.2

To prove Theorem 3.2, it must be shown that for all y(T) in the
complement of g, a min-max solution does not exist. In Figure C.1, the
interior of regiong I and II represent the complement of g. In the
proof it will be ﬁssumed éhat y(T) is in Region i. An analogous proof
can be given for points in Region II.MX

Let us assume that there exists a min-max trajectory y*(t,y(7)),
starting at y(7) which is in Region 1.} We claim that

y*(t5¥(1)) =0 (¢.40)
If y*(t,y(t)) remains in Region Ion (T,tl), then it clearly must go
through the point y(tl) = 0. If the trajectoty leaves Region I prior to
tl, it must intersect . a boundary of the region. Each boundary is a
min-max trajectory which goes through the point ¥(t;) = 0. Thue

y*(tl,y(T)) must also go through this point, proving that (C.40) is correct.

fIt will be shown that this assumption results in a contradiction.
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Now consider the réturn

T T mln max "‘

It follows from the Principle of Optimality, (C:40), and (C-29) that

R’ (t)b(t)

F(y(r),7) == ﬂz(t)+u:u;_ ves—[z 1[‘ ——B'(U—y] dt] (c uz)\

We now claim that there musf exist a T sufficiently close to tl go that
¥*(t,y(7)) # 0 | (c.43)
on (T,tl). To prove thig, we shall first rule out the possibility ﬁhat
y*(t,y(7)) = O on this interval, using the following argument. If
y*(t,¥(7)) = 0, then from (C.T)
B/(t) b(t) u* + R’(t) da(t) ¥* =0 (c.uk)

Since u* cannot be a flinction of V* in a min-max problem, (C.4%) will

hold only if R’(t) b(t) u* = 0 and R’(t) d(t) ¥* = 0. Referring to

equation (C-42), it is clear that

R (t) b(t)

min ! ! %[ y] dt = {c.hs}

U e Sz Ve ’S;
Inspection of (C.37) indicates that R/(t) d(t) # O on (‘t,tl) for 7
sufficiently close to tl. Thus v* = O on ('r,tl). But an inspection of
(C.T) clearly indicates that some other choice for v, say v =1, would
result in a non-zero (positive) value for the integral in (C-‘*5). Thus
V* = 0 cannot be a maximizing disturbance, and y*(t,y(t)) = 0 cannot be
a min-max trajectory on (T’tl)'
- Next we recall"thét for u* and v* to be admissible, they must be

piecewise-continudﬁs tiine functions. It follows from this observation

that there must exist a T sufficiently close to t, for which (C.43) nolas.

1



For the remainder of the proof, it will be assuﬁgd that
v*(t,y(7)) > O on (T,‘bl). An analogous proof can be given for the case

y*(t,y(7)) < 0.
-.r o
Since y*(t,y(7)) > 0, it follows from equations (C.7), (C.40), and
(C.42) that v* = sgn(o, R’(t) 4(t)) on (t,t;). Thus (C.7) may be
written as
¥ = 8(t) B’ (t) b(t) u + B(t) |B () a(t)] (c.46)
The control u¥* may be determined by minimizing the integral
t R/ (t) b(t)
1alp= = - 2
.2.J'T [u - —T— y] at (c.47)
subject to (C.40) and (C.46). If u* is a minimizing control, it must

satisfy the necessary conditions of the Maximum Principle [éa. To apply

the principle, we first form the Hamiltonian function

- 1 /= ’
H(y, A» u) = -2-(u - M%%-t%@ly)z

+1 B(t) B'(t) b(t) w+x B(t)|R (t) a(¢)| (c.u8)
whefe A 1s a multiplier to be determined. If u* is a minimizing coﬁtrol,
then it is necessary that it minimize H at each ingtant of time. This
implieg that

R’(t) b(t)

u* = gy ¥ - Mt) B(t) B/(t) b(t) (c.49)

The multiplier ) satisfies
A=- Hy(y, A> u¥) = - (R'(t) p(tI N (c.50)
Using (C.2) it is clear that A _
A (8) = == (c.51)
B (t) ) _,

where C is a constant of integration depending on T. Thus
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R (t) p(t) C B'(t) b(t)

k= Y € R y(t) - ) (c.52)

and
y = (& (8) p(t))° ¥ - (R'(£) B(+))? ¢
+ B8(t) |R'(t) ()] (c.53)
Since y*(t,¥(7)) > 0 on (7,t;) and y*(t;,y(v)) = 0, it follows from
(c.53) that ‘ )
(B(t) (£))% ¢ - B(t) |R(%) a(t)| » O (c.54)

must hold on (T,tl) for T sufficiently close to t It also followé

1
from (¢.53) that
R/(t) b(t)

y(t)=B(tl)[B(T)-c{ [__BGT—] dt

6 B (6) a(t)]

. B at} ] (c.55)

But from (g,2) and (3-32) | ) )
1 1 8, (B (8) b(t))? -

- - = - - dt (c.56)

B(s,) £ (r) e T R S

and

,, ﬂ(t ) by |B7(2) d(4)] |
Z ; J‘ ﬁ(t) at (c°57)

Using (c.37) it may also be verified thdt
n(t) = B(t;) B(t;) - B(t) #(¢) (c 58)

on (T,tl)a Noting that y(t ) =0 and using (C.55) to (C 58), it can be

determined that




6 (t,)
= (y(t) - n(7))

¢ = Bls,) #le)) + B , (c.59)
( () 1) |
B (7) |
For y(T) in Region I (see (C.36)), it follows from (C.2), (C.58) an&
(¢.59) that o '
0g C< B(t) g(t,) (c.60)

Since R(t), b(t), d(t) and @(t) are continuous, it follows from (c.37)
that

(B (t,) B(t))? #(8)) - |R(t;) at))] =0

Therefore

R (ey) ale,)]

) Gy s (e
From (C.60) and (C.61). it is clear that

(R (8;) (6, ))% ¢ - B(t;) |R(£)) &lty)| < © (c-62)
But since the sbove term is a continyous function of time,

(®(8) B(8))? ¢ - B(t) | (8) a(t)] < O (c.63)

on (T,tl) for T sufficiently close to tl. This is a contradiction of

(c.54). Thus the theorem is proved.

C.3 Proof of Theorem 3.3

The proof of this theorem is based on the same type of argument
used to prove Theorem 3.1. First, several simplifying transformations

are made.
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Let ] |
z(t) = R'(t) x(t) + o(t) te [t,,T] (c.64)

where B(t) and 6(t) are defined in (3.4l4) and (3.45). Next define v as

V= (v - 2 (yy(8) +y (1)) ™ 2 @) (c.65)

on tto,ij. Let S; be the set of all piecewise-continuous time functions
on [to:vT] such that if v ¢ 8-, then l?l < 1. Note that v § <= ve S
Define the vector

a(8) = 3 y,(8) - yy(8)) e(t) (c.66)

on [t ,T]. Finally, define the functional

Fa(t,)y 5 T3 w, V) = 3(x(6)s b5 T3 u, v) (c.67)

From (3.42) and (3.43), it is clear that

Halty), t,, T w, V) =5 2(T) (c.68)
It is easily verified that z(t) satisfies

z = R'(t) b(t) u +R'(t) g(¢t) v (c.69)

Our objective is to determine the return function F(y(t),T) which

satisfies

"F(y(7),7) = min _ max J(z(7), -r, T u, V) (c.70)

u e Su e s; -

To do this, we shall work backwards  from time T. Suppose that there is
an interval [t,,T] on which |R(t)’ 4(t)| - |R(t) B(t)] > 0.7 Let &
be the smallest time on [to,T] for which this is true. Insi)ecti'oh of

(c.68) to (€.70) clearly indicates that

Tan analogous proof may bBe given for the casé | R’ (t) fg(t)] z

|B’ (t) b(t)] < O on [t;5T]-
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* = sgn(o,R'(t) 4(t)) sen(a,z(t)); a = Lor -1 (c.T1)
and
uw* = - sgn(o,R (t) b(t) z(t)) (c.72)
on this interval. Note that the resulting min-max trajectory z*(t,z(7)),
T ¢ [t,,T], does not change sign on (7,T). Since |

2(1) = 2(v) + [T [|B'(t) a(t)|sen(q,z¥)
T

- |R(%) b(t)|sen(o,z*)] at (c.73)

it is readily established that ) "

Fz(7),7) = 3 22(v) + g(%)|2(v)] + 5 £°() (c.74)
where @(7) is defined in (3.46). An inspection of equation (3.47) '
indicates that g(t) = O on [;I;j. Thus we have shown that if
|z(7)] > (1), T¢ (t,,T], then u¥, v¥ and F are given by (C.T1), (c.72)
and (C.T4).

Now consider a second interval [tz,tl) on which

|B'(t) b(t)| - |B’(t) 4(t)] 2 O. It follows from (C.74) and the

Principle of Optimality that

2

F(a(v),) = min _ max 3 20t) + e fa(e)] + 3 0°)]  (e7)

uesu Vgs;:

for T ¢ [tz,tl). If |2(7)| is sufficiently large, it 18 clear from
(c.69) that for any admissable u and ;;‘the resulting trajectory
z(t,z(7)) will not change sign on (T,tl). Under such circumstances,
inspection of (¢.69) and (C.75) clearly indicates that

sgn(o,R’ (t) d(t)) sen(q,z)

and } (c.76)

- sgn(o,R"(t) b(t)) sgn(o,z)

v

L}

u¥*
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Using (C.73), which now holds on (7,T], it is clear that
F(z(7),7) = 3 2°(1) + p(7)|2(7)] + % A7) (c.77)

Of course, we must insure that ‘z(T)\ is large enough so that z*(t,z(t))
doeg not change sign of (T,tl)- It is clear that the smallest Value of
|z(7)| for which this is so is the one which will result in z*(tl,z(r))=o.
Thus by computing the non-negative, backward solution of (C.69) using
u* and v* as given in (C.76), and starting at z(tl) = 0, this smallest
value for |z(7)| can be found. It may easily be seen from (3.47) that
g(t) is this backward solution on (T,tlj.

This argument may be continued on successive intervals where
| R (t) a(t)] - |R’(t) b(t)| is either positive or non-positive until the
initial time to is reached. The end result is summarized as follows.
If for T ¢ [t,T], |z(%)| > g(7), then ux, v and‘F(z(T),T) are given
by equations (¢.76) and (C.77). From this result, and equations (C.64)

to (¢.66), it is clear that the theorem has been proved.

C.4 Proof of Theorem 3.4
To prove this theorem, it is convenient to refer to Figure C.1.
If n(t) and y(t) are replaced by g(t) and z(t), the figure can be.used

to represent (z,t) space.! For values of z(t) lying outside of or on

‘the thick solid and dashed lines, u* and v* and F(z(t),t) are given by

Theorem 3.3. The light lines in the figure represent min-max

trajectories.

TIn (z,t) space the boundary for Region II would be determined by the
two trajectories arriving at y(t5) = 0 rather than the two arriving at

¥(tg) = O as shown. This follows from equation (3.47).
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We are now primarily concerned with points which lie in Regions 1
and II. Let us assume that z(Tt) is in Region I. A similar proof of the
theorem cah be given for points in Region II.

It is claimed that for any admissible u and';, the resulting
trajectory z(t,z(t)) must go through the point

z(t,,2(7)) = 0 (c.78)
provided that u¥ and v* given in (€.T76) are used if the trajectory “
leaves Region I. The reasoning here is the same as that used in the
proof of Theorem 3.2. If z(t,z(7)) remains in Region I on (T,tl), then
it clearly must go through the point z(tl) = 0. If the trajectory
leaves Region I prior to time tl’ it must intersect a boundary. §&ince
each boundary is a min-max trajectory going through z(tl) = 0, thé
expression in (C.78) must hold. |

We may use the Principle of Optimality to write

F(z(r),r) = min _max [ 225(t) +8(s) o) [+ 3 #F(6 )01 (C-T9)
ugsu VeS‘; ' _ R .

Using (C.ﬁﬁ), it is clear that
- 1
F(a(7),7) = 5 #°(,)

Note that t, is the first zero of g(t) on the interval [7,T]. This

1

proves the theorem.




